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Comparison of asymptotics of heart and nerve excitability
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We analyze the asymptotic structure of two classical models of mathematical biology, the models of elec-
trical action by Hodgkin-Huxley1952 for a giant squid axon and by Nob{&962 for mammalian Purkinje
fibres. We use the procedure of parametric embedding to formally introduce small parameters in these
experiment-based models. Although one of the models was designed as a modification of the other, their
structure with respect to the small parameters appears to be entirely different: the Hodgkin-Huxley model has
two slow and two fast variables, while Noble’s model has one slow variable, two fast variables, and one
superfast variable. The singular perturbation theory of these models adequately reproduces some features of the
accurate numeric solutions, such as excitability and the shape of the voltage upstroke, but fails to reproduce
other features, such as the relatively slow return from the excited state, compared to the speed of the upstroke.
We present arguments towards the viewpoint that contrary to the conjecture proposed by ZE&r2arior
these two models this failure is an inevitable consequence of the Tikhonov-style appearance of the small
parameters, and a more adequate asymptotic description may only be achieved with small parameters entering
the equations in a significantly different way.

DOI: 10.1103/PhysReVvE.68.011902 PACS nuni)er87.10+e

[. INTRODUCTION were attempts to understand the behavior of the solutions in
these models by some asymptotic methods, and to devise
The idea of the present study came from a 1972 paper bgimpler models that admit analytical treatment. The most
Zeemar[ 1], which was one in his series of works dedicatedprominent example of such study was the paper by FitzHugh
to possible applications of the then new catastrophe theory7], who has shown that a modification of Van der Pol's
[2]. In that paper, Zeeman has analyzed an apparent diffenonlinear oscillator can demonstrate qualitative properties
ence between two sorts of biological excitable systemsyery similar to those of the HH system, and that a collection
nerve and heart, and conjectured that this difference magf appropriate two-dimensional projections of the four-
come as a consequence of them being described by singdimensional trajectories of the HH system look similar to the
larly perturbed systems of equations, with the slow maniphase portrait of the modified Van der Pol system. When
folds demonstrating catastrophes of different types. Amazeonsidered as a singularly perturbed system, FitzHugh'’s sys-
ingly, in the following 30 years, there were no publishedtem allowed a qualitative analysis explaining its main fea-
papers directly testing this conjecture. To fill in this gap, wastureswithout using a computelEver since, FitzHugh'’s sys-
one reason to undertake this study. tem and its numerous variations are very popular as simple
The other reason was more practical. Mathematical modsystems qualitatively similar to real excitable systems, and
els describing biological excitable systems, particularlyallowing both a better qualitative understanding, and a more
nerve and heart tissues, are historically the first, and so faefficient numerical treatment of large numbers of excitable
the best, in terms of quantitative description of truly biologi- cells, than detailed, realistic models. Yet, these simplified
cal phenomena, based on solid experimental information. Anodels are only in qualitative and not in quantitative agree-
special place in this set belongs to Hodgkin and HuxI€$]s ment with the real systems. Moreover, these simplified mod-
model of the squid giant axon, and NoblgZ& model of the els are not in any waglerivedfrom the realistic systems, and
cells of Purkinje fibres of mammalian heart. These were histherefore there is no way to be sure that they reproduce even
torically the first and still the simplest in that family. Since the qualitative effects correctly.
then, the progress in development of realistic models of dif- This makes a case for deriving simplified models from
ferent kinds of cells has been enormous, and the curremealistic models, by exploiting their real properties, via a
models achieve remarkable complexity and accuracy, paelearly defined set of assumptions and transformations. One
ticularly for cardiac cell§5,6]. One disappointing, from a such attempt was made as early as 1973 by Krinsky and
theoretical physicist's point of view, feature of all these mod-Kokoz [8] who have considered the HH system as a singu-
els is a seemingly absolute necessity of numerical treatmeniarly perturbed system to reduce its order to 3, andeinoc
since they are high-ordé¢at least, of order 4, as for both the empirical observation to further reduce it to 2, which ended
Hodgkin-Huxley(HH) and Noble-196ZN62) modeld non-  up with a system whose phase portrait looked similar to that
linear systems of differential equations, and do not admibf FitzHugh's system, but already without any small param-
exact analytical solution. Purely numerical study, howeverters left. Although very interesting in a historical perspec-
good the computers may be, always has well known disadive, that paper failed to have a more lasting impact in its
vantages, e.g., lack of insight into dependence of the soluime, in particular, because tha hoc methods used there
tions on the parameters. Thus, from the very beginning thereould not be transferred to more sophisticated models.
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TABLE I. Parameters and functions of the Hodgkin-Huxley and then generalized to more sophisticated models. The present

Noble-1962 models.

paper deals with the two simplest cases.
The structure of this paper is as follows. In Sec. Il, we

Parameter or Hodgkin-Huxley Noble-1962 introduce Hodgkin and Huxley’1952 and Noble’s(1962
function system system systems of equations. In Sec. lll, we present the relevant bits
Cu 1 12 of the singular perturbation_ th_eory of fast-slow systems, sych
as the concepts of fast foliation and slow manifold. Section
o, (E) 0.4 —-E+25 0.1(—E-49 IV describes two Zeeman'’s toy models and their analysis, as
e("E+25)/10_1 (el~E-48)/15_1) an illustration of the method we use later for the HH and
0.0~ E+10) 0.0001 — E—50) N62 models. Section V describes parametric embedding, the
ay(E) formal procedure of introducing artificial small parameters to
(e("Er10M0_1) (e(7E750nm0—1) enable asymptotic treatment of experiment-based models,
an(E) 0.07% ¥/ 0.17(~E-90/20 which do not have parameters but only experimentally mea-
ens 0.12E+8) sured constants. In Sec. VI, we analyze the relative speeds of
Bm(E) ae SEOE ) the four variables in both the HH and N62 models, to assign
5.(E) 0,125 E/80 0(()eoae(*E*_90))’8° them the roles of slow and fast variables. The main results
n : : are presented in Secs. VII and VIIl, where we apply all the
B4(E) 1 1 described methods to the HH and N62 models. The discus-
(el "E+30)/101 1) (e("E-42)/104 1) sion of the results is presented in Sec. IX.
Ona 120 400
o 0 014 Il. HOGKIN-HUXLEY'S 1952 AND NOBLE'S 1962
2Ny 36 12 SYSTEMS OF EQUATIONS
%E (E) 0 1.26(~E—90)/50 _ Both the HH and N62 systems of equations can be written
! +0.015(E+90)/60 in the same form,
9 0.3 0 dE
Epa 115 40 E=C,\_,,1fE(E,h,m,n),
Ex -12 —100
E, 10.613 —60

With the advent of computational biology of extended

dh —
ar ~ an(B)(A=h) = Bu(E)h=[h(E)—h]/m(E),

biological systems including large numbers of excitable ele- _m:a (E)(1—m)— Bm(E)m=[m(E) —m]/7,(E)
ments, such as large neural networks or whole heart, the dt " " me
guestion of faithful simplifications of detailed models gains dn

more and more of practical importance. Various kinds of _n N ey

simplified models of excitable systems, such as FitzHugh  dt =an(B)(1=n) = Ba(B)n=[n(E) =nl/ro(8), (1)
and its variations, and even further caricaturelike simplifica-

tions, such as integrate-and-fire neurons, cellular automat¥/here

etc., have been used in large scale computations as a “poor — 4= — 5 =
man’s substitute” of realistic models. Now the level of un- fe(E;n.mn)=[gxn"+ gk (E)J(Ex—E) + (gndm”h+Ona,)
derstanding achievable at such caricature level is to a con-
siderable extent exhausted. On the other hand, the develop-
ing in cardiology. There have been several attempts to de! pA/et, tis time measured in mlllllsecpr)dE Is the
velop models which would mimic the properties of realistictr"’msmembr"’me voltage measu_red n m'."'VOHEk’ k.
models but would be less computational expensive, see, e.q., Na,K! are the reversal potentlals of sodium, potassium,
Refs.[9-12]. However, all these attempts so far have been; hd leakage currents, respeFt|ver, rneasured. .|n the same
at least in some points, phenomenological, and thus have tif€ale asE, gy are corresponding maximal specific conduc-
same principal disadvantages as FitzHugh's attempt, i.etances in mmho/cfy n, m, h are dimensionless “gating”
lack of confidence in quantitative and perhaps even qualitavariables, Cy is the specific membrane capacitance in
tive predictions. Hence, development of methods of reliablexF/cn?, «;(E), Bj(E), j=h,m,n, are gate’s opening and
and verifiable derivation of simplified models, qualitatively closing rates in ms!, J(E)=aj/(a;+ B;) are the gates’ in-

and quantitatively reproducing relevant properties of the destant equilibrium values, and;(E)=1/(a;+3;) are the
tailed models, or deviating from them in a controllable way,gates’ dynamics time scales in milliseconds. The standard
can present a considerable advantage for computations fealues of parameters and forms of the functions used in Eq.
applications. We believe that the methods of such derivationél) are different for the HH and N62 models, and are sum-
should be developed starting from the simplest cases, anglarized in Table I.

X (Ena—E)+9/(E—E)
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FIG. 2. (a) Action potential in the Hodgkin-Huxley system: so-
lution for the initial point €, m,n,h)=(15,0.0530,0.5961,0.3177).
(b) Pacemaker potential to Noble’'s system: solution for the initial
point (E,n,m,h)=(—70.6426,0.3276,0.0786,0.6025). The labels
l*10"/_\ mark feature points of the graphs referred to in the asymptotic
analysis to follow.

107
0 100 % Emw %0 The difference in the morphology and in quantitative

50
©) E (mV) @ o : ;
characteristics of the solutions of the two models is well

FIG. 1. Properties of the channel gates’ in the Hodgkin-Huxleyunderstood physiologically. In this study, we aim to see what
(HH) system and Noble-196(\62) system.(a,b) The quasistation- Mmathematical features of these_ systems provide for these dif-
ary values of the gateg=m,h,n in the HH () and N62(b) sys- ferences, paru_cula_rly the qualitative ones. Zeerﬁ_ﬂnsug—
tems. Solid linesm(E); dash-dotted linesh(E); dashed lines, gested that this dl.ﬁerence may be. understood in 'terms of
— . . asymptotic properties of the underlying models considered as
n(E). (c,d) The time scales in the HH (c) and N62(b) systems. . “ »

R ) ) : . . singularly perturbed “fast-slow” systems, and suggested two
Solid lines,r,,,(E); dash-dotted lines;,(E); dashed linesr,(E) in o . .
(©): and 0.0%,(E) in (d). a priori model systems demonstrating the requwed features.

' " In this study, we will use the same asymptotic approach as
Zeeman did, but base the analysis on actual HH and N62
models. Although the asymptotic theory of fast-slow systems
is well known (see, e.g., Ref.13]), we give its brief over-
view in the following section, for reader’s convenience and
also to introduce the terms and notations we use later.

In the original Hodgkin and Huxley papé€B8], the trans-
membrane voltag® was measured with respect to the rest-
ing potential, and in the direction opposite to the one ac
cepted later, so the variabléof Ref.[3] and the variabld
in Eq. (1) are related by

IIl. THE SINGULAR PERTURBATION THEORY
E=-V OF THE FAST-SLOW SYSTEMS

We consider a system df; +k, first-order autonomous
ordinary differential equations fd¢; + k, dynamic variables,
of which k; are “slow” and k, are “fast.” We denote the

and the resting potential in the HH model correspondk to

=0 by definition; in fact, parameté; was not measured but

chc_i_shen with a high precision to ensure that. . vector of slow variables; € Rt and the vector of fast vari-
e N62 model was formulated in terms of true experi- bl ®%. Then th ; f i .

mentally observed potentials. It was obtained by modifica2P'€SX2 € % Then e system of equations 1S

tions of the HH system, taking into account the differences in dx

the electrophysiology of the membrane of Purkinje cells in —lzfl(xl,xz), 2

mammalian hearts from the membrane of the giant squid dt

axon, known at that time. The most obvious change is a

100-fold increase in the value of,(E), which corresponds

to a much longer plateau of the actiqgmacemakerpotential

duration in Purkinje cells compared to that in the nerve ) ) )

membrane. The differences between various Vo|tageWhere€>o is a small parameter. The transformation of time

dependent functions in these two models are illustrated ih= €T brings this system to the form

Fig. 1.

dx,
6W:f2(x1,xz), (3

dxq

Figure 2 is the action and pacemaker potentials for the — L= efy(Xy,X) (4)
above system of equatioii¥). The HH action potential, i.e., dT B
the time course of the transmembrane voltage after a rela-
tively small but overthreshold deviation from the stable rest- dx,
ing state, has a triangular shape and relatively short duration. aT - Fa(X1.,%2). ®

The N62 pacemaker potentials, i.e., the time course of the

transmembrane potential during spontaneous oscillations, ag&ystems(2), (3) (the slow-time systeinand (4), (5) (the
much longer and have a more rectangular shape, with thfast-time systemare equivalent to each other for every fixed
characteristic “overshot” spikes labeled 1B/ €>0, but have different properties in the limit— +0.
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The fast-time system at=0 becomes the essential assumptions for this regular behavior are that
the slow part of the trajectory goes within an attracting re-

dxq . 6 gion of the slow manifold, defined as set of equilibria of the
a7 7 ©) fast subsystems Ed7) that are stabldattractive in linear
approximation, and that the initial poirx{,x3) is within the
dx, basin of attraction of the equilibriurgx?,X(x9)) in terms of
a7 - falxq,x2), (M) the fast-time systertd), (5).

Pontryagin’s theorem states conditions for the trajectories
which means that the slow variables remain constant, and leaving off the slow manifold to start movement along the
only the fast variables, vary. A conditionx,;=x; for a  fast foliation. Typically, that happens when a trajectory mov-
cR} in the phase space of the systefifx;,X,)} attracting region of that manifold, provided that the_ slow
—Rk1tk2. All such manifolds for all pOSSiblE(l)eRkl fillthe trajectory is tr_ansversal to that boundary. If after takm_g off

the slow manifold, the trajectory then happens to be in the
basin of another stable part of the slow manifold, then, by
Tikhonov’s theorem, it will again have a quick transient
d’ﬁong the fast foliation with subsequent slow motion along
the slow manifold.

Thus, a trajectory with a regular behavior in a fast-slow
system will consist of slow and fast pieces. Transition from
fast to slow motion happens when a fast piece of trajectory
dx, reaches the slow manifold; and transition from slow to fast
——=f1(X1,X5), (8) motion happens when a slow piece of trajectory reaches the
dt boundary of the attracting region of the slow manifold. The
slow pieces of trajectory are described by a systenk,of
differential equations, and the fast pieces are described by a
system ofk, differential equations. That means, both sys-
tems are simpler than the original system, thus may admit
analytical solution, more exhaustive qualitative analysis, or
at least be easier for numerical treatment, due to a smaller
dimensionality and absence of the small parameter.

For the purposes of this paper, we will ignore some fine
details that make life more complicated than the above ide-
alized picture. E.g., the exact moment of the take-off at a
small but fixed value of the small parameter depends on the
dx, initial conditions in a nontrivial way; namely, some very
——=1f1(Xq,X(X7)). (100  small fractions of trajectories continue to travel along the
dt slow manifold well into the repelling region before taking off
(so called “duck” solution$. A more detailed discussion of
this and other related questions and a comprehensive bibli-
ography can be found in RefL3].

whole of the phase spad¥t* k2. This k;-parametric family
of nonintersecting k,-dimensional manifolds filling the
whole (k; +k,)-dimensional space is called tFest foliation
of that space, because it describes evolution of the system
the fast-time scale. Each of the manifolds=x} makes a
leaf of the fast foliation.

The slow-time system at=0 becomes

0="5(X1,Xz), 9

i.e., a system of differential equatiori8) with finite con-
straints Eq. (9). The finite constraints define a
k,-dimensional manifold in thekj + k,)-dimensional phase
space, which is called thelow manifold This also defines
the fast variablex, as implicit functions of the slow vari-
ables,x,= X(x;), which reduces the original system bkf
+k, equations to the&; equations on the slow manifold,
which can be written in the form

If the explicit solution of Eq.(9) in the form x,=X(x;) is

possible, i.e., if the slow variableg can be chosen as coor-

dinates on the slow manifold, the procedure is often called an~ ;. ,onov [14] also presented a generalization of the re-

adiabatic eliminatiorof the fast variableg,. Otherwise, the duction theorem, for hierarchical systems that depend on

procedure still can be used, but another system of coordimore than one s,mall parameter, for instance

nates on the slow manifold is required. ' '
The rigorous grounds for the asymptotic analysis of fast-

slow systems have been laid down by classical theorems due % =f1(X1,X,X3), XpeRk,
to Tikhonov (1952 [14] and Pontryagir1957 [15]. dt

Tikhonov's theorem states conditions when a typical so-
lution of the exact system starts with initial conditions at a dx,

2 Ky
point (x?,x3) demonstrating a “regular” behavior, which €1gp —2X1XeXs), Xpe R

consists of two parts. The first part of a regular solution is a

transient period lasting for the time interveke or Tecl, dxs ‘

close to the solution of Eq7) within the leafx, =x? starting €162 g ~ fa(X1.X2.X3),  Xge R, 11)
from (x2,x9) and approaching the poirx?,X(x?)). The

second part is slow motion along the slow manifold, it runswhere simultaneously,— +0 ande,— +0. In this case, a
on the time scaléx1 or Txe ! and the solution remains typical trajectory would consist dfl) a superfast part when
close to the solution of Eq10) with x,=X(x;) with initial only x5 change whilex; andx, remain constant during time
conditions(x?,X(x?)). Apart from the technical conditions, txe; e, *, followed by (2) a fast part whenx; and x,
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change, so thaftz(x41,X5,X3)=~0, while x; remain constant, 15 1.5

B B
lastingt=e; *, followed by (3) slow motion when all three 1 // 1™N\e
sets of variables change withf;(x;,%5,X3)~0 and 0.5 C 4 0.5
fo(X1,X2,X3)~0, on the time scaléex1. & o Fa § o
We will say that systen(2), (3) hasasymptotic structure 05 v o8
(ki,ky), and system (11) has asymptotic structure 1 // 4
// E
(ky,kz,K3). 15 D 45D
—05 ; 0 05 0 05 1t 15 2 25
IV. THE TWO ZEEMAN'S MODELS @ (b)

Zeeman[1] has considered two “toy” models, demon- FIG. 3. (a) Phase portrait of Zeeman’s heart model Efp), €
strating two different types of asymptotic behavior of the =1073. The double arrows represent the flow on the fast fgliation
shape of the action potential, which he believed resemble@nd the single arrows represent the flow on the slow manifold. In
the shapes of the action potentials in nerve and in cardiatis case, the slow manifold is the lie= —x"+x. The dotted line
tissue. Thus, he called them the “nerve” model and thef€Presents the trajectory with the initial poirit, ) =(0.2,0.1). (b)
“heart” model. Without discussing how much these models A¢tion DO‘GF“""'" corresponding o the trajfctory OT, par(e) with
actually relate to nerve or heart tissue, we briefly discuséhe initial point (,x)=(0.2,0.1). Here the *voltage” is-x.
them here, for the sake of introducing the key concepts an
describing the method that we will subsequently apply to th
HH and N62 systems.

Zeeman’s heart model has asymptotic structure (1,1) an
can be written in the form

ined byx®—x+b=0 and %?>1, and the dashed line is the
unstable piece, defined by —x+b=0 and x?<1. They

are separated by fold points shown by open circles. The fixed
point (E) of the flow on the slow manifold is located on the
attracting branch and therefore is stable.

A selected trajectory is shown with dotted line and ar-
rows. Starting from pointA, it reaches the upper stable
(12) branch of the slow manifoldR), travels along it leftwards

until reaching the left fold pointC) and cannot go any fur-

whereb is the slow variable and is the fast variable. This ther as it has reached the repelling piece of the slow mani-
example is very similar to the famous system of equationd0ld. Therefore the trajectory has to make a jump from the

due to FitzHugH{7]. The slow manifold of this system is a fold point to the pointD on the lower stable branch of the
cubic parabola slow manifold, and then travel back along it to the stable

equilibrium pointE. Thus, trajectoryABCDE represents a
f(x,b)=x3—x+b=0. typical action potential. ThAB part corresponds to the jump

. ) _onset. TheBC part represents the slow excitation part, the
The slow variabléb cannot be chosen as a coordinate on thisaction potential plateau. ThED piece is the jump return,

slow manifold, as this equation cannot be resolved with reand DE is the smooth part of the return to the equilibrium.
spect to the fast variable But it can be easily resolved with The corresponding action potential is shown in Fi¢p)3It

b=x—xXg,

ex=—(x3—x+Dh),

respect tb, and sox can be used as a coordinate. has a rather “rectangular” shape which was the reason Zee-
The stable(attracting regions on the slow manifold are man called it the heart model.
defined by an additional condition thaf/dx>0 and the Zeeman’'s nerve model is a system with asymptotic struc-

unstable(repelling region corresponds t@f/dx<0. The  tyre (2,1):
boundary between these two regions satisfies the system of
equations

a=—2(a+x),
f(x,b)=0, .
b=—-(a+1),
of
o (X%:0)=0, ex=—(x3+ax+b), (13

which gives two solutions, ><(1,b1)=(1/\/§,2/3\/§) and wherea andb are the slow variables andis the fast vari-
(x,,b,)=(—1/{/3,—2/3/3). These are thefold points able. The slow manifold is defined by the equation
where the fast leaves are tangent to the slow manifold. At
about these points, trajectories moving along the slow mani- f(x,a,b)=x3+ax+b=0, (14
fold would take off from it.

Since we have only one fast variable, the fast foliation isand the fast foliation is a two-parametric family of linas

a family of linesb=const. In the leaves withe (b;,b,) the  =const,b=const. Thebistability is observed for thosaand
fast subsystem has three equilibria, of which two are stablé for which Eq.(14) has three real solutions far the set of
and separated by the unstable one. sucha andb is defined by condition 2 —4a%>0. On the

The phase portrait of the system is shown in Fig) 3The  contrary, if 2b?—4a3<0, then Eq(14) has one simple real
solid lines represent stable pieces of the slow manifold, desolution forx, and we call this thenonostabilityregion on
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FIG. 4. (Color onling Phase portrait of Zeeman’s “nerve” model E4.3), e=10 . The semitransparent surface is the slow manifold
x3+ax+b=0. The thick solid line is the fold line Eq17), the thin lines are its projections to the coordinate planes, the filled circles are
the cusp point (0,0,0) and its projections. A selected trajedtimitial conditions @,b,x)=(—0.8,0.25;-0.1)] and its projections are shown
by dash-dotted linega) The slow manifold, trajectory and the fold curve, with their projectidbs.The trajectory and the fold curve with
their projections, but without the slow manifol@) Action potential(“voltage” —x vs time), corresponding to the trajectory () and(b).

the (a,b) plane. The boundary between these regions in thetable. The unstable piece is projected onto the bistability

(a,b) plane is the semicubic parabola region of the @,b) plane, and corresponds to the middle root
5 3 x of the corresponding functiorf{a,b,x). The stable piece

270°—4a°=0, (19 includes the monostability region together with the upper

and lower branches of the manifold over the bistability re-

which corresponds to one triple rod@at point @,b)
=(0,0)] or one double and one simple roadill other
points in Eq. (14).

Curve Eq.(15) is the projection onto thea(b) plane of

gion.
Theresting statan this model is &,b,x)=(—1,0,1) and
it belongs to the uppedfrecovery”) branch of the stable part
: : of the manifold over the stability region. Thus we have the
the fpld curve defined as the set_of_ points where the Slowexcitable behavior: perturbations displacing the system from
manifold is tangent to the fast folla_tlon, (0,0,-Mf(a,b,x)_ the resting state beyond the threshold, represented by the
=df/9x=0. So the fold curves satisfy these two equations;,,qiape pranch of the slow manifold, fall down to the lower
f(a,b,x)=0: x3+ax+b=0, stable(“excitation”) branch of the slow manifold, and return
to the resting state from there. Unlike the heart model, now
of there are various opportunities. A trajectory can reach the
5(a,b,x)=0: 3x?+a=0, fold line and make a jump return to the upper branch of the
slow manifold moving towards the resting state, or it can
and can be parametrized by reach that state moving entirely within the slow manifold,
circumventing the cusp point, as now the upper and lower
a=—3x2, (16)  branches are connected to each other via the monostable re-
gion.
b=2x3. a7 It is not possible to determine analytically, which of the
two possibilities is realized for a given trajectory. Thiease
This is a smooth curve in the(b,x) space. Its projection to  portrait, showing the slow manifold, the fold line, and a
(a,b) plane is also a smooth curve except where it is tangenéelected trajectory computed numerically, and a correspond-
to the direction of the projection, i.e., to the fast foliation. jng action potential are displayed in Fig. 4. This selected
Such tangency is characterized by the third condition trajectory shows a marginal case: its return path goes very
near to the cusp point. The corresponding action potential of
this nerve model demonstrates a jump onset of excitation,
but a moderately smooth return to equilibrium. This looks
similar to the HH action potential, which was the reason
Thus, the only point where this tangency happens in thigZeeman called this a nerve model. Note, however, that a
model is the point (0,0,0) where E(.4) has a triple zero in  small change in the initial conditions of the trajectory can
x. This is thecusp (or pleating by the terminology of Ref. resultin a jump return, if the trajectory fails to go around the
[13]) point of the slow manifold. cusp.
The fold curve separates the staljigtracting and un-
stable (repelling regions of the slow manifold. Unlike the
heart model, where the fold points have cut the slow mani-
fold into three pieces, two stable and one unstable, here the We are going to apply the asymptotic procedure described
fold curve only makes two pieces, one stable and one unabove to the Hodgkin-Huxley and Nob{(#962 systems of

5*f
F(a,b,x)zo: 6x=0.
X

V. PARAMETRIC EMBEDDING
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equations defined by Ed1l) and Table I. The immediate 8
problem is that these systems do not depend on any paramn,—,
eters, but only contain constants, which have been measureé 1
experimentally and have certain values, even if not alwayse
known with a good precision. =

Thus, to apply the singular perturbation technique, we —1\_///%/’
need to introduce the small parameters artificially. This is, of [
course a standard practice in principle, often successfully, - ° tfms) 10 0 500 20(0&8)1500 2000
used on intuitive basis. However, since this procedure is the(a) ®)
key step in this study, we are going to formalize it, to avoid e B B
any ambiguity.

Definition 1.We will call a system g Clp . 3 - kcu

A A
depending on parameter a one-parametric embeddiraf a 0 3 7 s 1005 Eoo 100051500 5000
system ) t (ms) @ t (ms)
X= f(x), xe RY, FIG. 5. (a,b Graphs ofrg(t) (dotted line$, 7,(t) (solid lines,

J
7i(E,h,m,n)= E

7n(t) (dashed lines and7,(t) (dash-dotted lings corresponding to
if f(x)=F(x,1) for all xeRY. Similarly, we define an the solutionsE(t) shown on(c,d for (a,0 the HH and(b,d) N62
n-parametric embeddingwith right-hand sides in the form Systems.
F(x.e1,....6) and F(x1... 1=f(x). If an egiic time of a variablg as the inverse of the correspond-
n-parametric embedding has a form of a Tikhonov's fastjng diagonal element of the Jacobian of the right-hand sides,
slow system with asymptotic structurk,( . .. k,), we call
it a (Tikhonov)(Ky, . . . K,)-asymptotic embedding. dj\|~*
The typical use of this procedure has the form of a re- dt '
placement of a small constant with a small parameter. If a ) o )
system contains a dimensionless constamiich is “much ~ Obviously, forj=h,m,n this gives the same functions as
smaller than 1,” then replacement afwith ea constitutes a  defined in Eq(1), but also can be used fgr=E. After that
one-parametric embedding; and then the limit0 can be W€ decide that t_he vana_bles with _smallerwnl be called
considered. In practice, constamtvould more often be re- fast, and tbe variables with largerwill be called SIO.W'
placed with paramete#, but in the context ok—0 anda TheSETS. are not constants, though, but functions, and
=const this, of course, does not make any difference frorﬁhese functions depend on different arguments, so they can-
' ' not be compared directly. To make them comparable, we
Ea'There are infinitely many ways a given system can beconsider typical solutions at selected initial conditions. This
parametrically embedded. In terms of asymptotics, which mg'VESE’ n. h and_m_as _functlons ot, which, In turn, defines
the embeddings is “better” depends on the qualitative fea-aII th_e characte_nsuc t'Te scales of the varlables,iheqs
tures of the original systems that need to be represented, &Jréctlr?ns oft, via 7;(t) = 7 (E(t),h(t), m(t),n(t)), where;]
classes of solutions that need to be approximated. If a nu- F » M, O m(.j trates that during th i tential
merical simulation of the interesting properties can be done igure a) emonstrates that during theé action potentia
easily, then the practical recipe we use in this paper is to looK" the HH model, variable& andm are always faster t_han
at the solutions of the embedding at different, progressively?”abliih aEnd n:[hang th_at,. com??;ed t?[. each tOtrlml’lsb t
decreasing values of the artificial small parameteand see ?az\{ierrthaarl\g inlr';he emoitgm:rltn gf(:he aec?(():r:onotpe %ﬁgl IaS,O wue
when the features of interest will start to converge. If theconsider HHas &2 s StF::‘m withh andnaspslow variables
convergent behavior is satisfactorily similar to the original andE andm as fas:t va):iable,s
system withe=1, the embedding is adequate for these fea-~ . > .
tures. Figure §b) shovys that during the pacemaker potgntlals in
the N62 modelm is always the fastest, th& and h inter-
change at around the overshot spikes, and that all three of
VI. ANALYSIS OF THE RELATIVE SPEED these are always faster tham So we consider N62 as a
OF THE VARIABLES (1,2, system, whera is the slow variableE andh are fast
To obtain the asymptotic embeddings of the two systems’arables andnis the superfast variable.

we need to decide which variables shall be called slow and VIL A (2,2-ASYMPTOTIC EMBEDDING

which shall be called fast. It is reasonable to decide that OF THE HODGKIN-HUXLEY SYSTEM

based on the characteristic times of those variables. The three

gating variables have in their equations functiongy, The above analysis suggests that the adequate asymptotic
which have just that meaning. The equation Ebdoes not embedding of this system is (2,2), with slow variables
have a function calledz, so we define the instant charac- (h,n) and fast variablesg,m).

011902-7
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is essential, then the Tikhonov asymptotic embedding, con-
trary to Zeeman'’s expectation, is not sufficient, and one
should consider some more adequate appearance of the small
parametgs) in the system. Note that this conclusion comes
from the numeric experiment with the embedding, prior to,
and thus independent of, any analytic work.

The slow manifold corresponding to embedding ELB)
T (m;)'s is a two-dimensional manifold in the four-dimensional phase
(b) spaceR*={(n,h,E,m)}. It is defined by equating the right-

FIG. 6. The asymptotic embedding of the Hodgkin-Huxley sys-hand sides of then andE equations to zero,
tem. (a) The action potentials in Eq18) with the initial condition

0 0.5

(E,m,h,n)=(15,0.0530,0.5961,0.3177), original system with fe(E,h,m,n)=0,
=1 (solid line), and withe=10"2 (dashed ling (b) Same, in the _
fast time Eq.(19). m(E)—m=0.
ThUS, we consider the fo”owing One_parametric embed.ThiS cannot be resolved eXpllCltIy with reSpeCt to the fast
ding of Eq.(1): variables E,m), but can be resolved with respect tm,f),
giving
dn — .
az[n(E)—n]/Tn(E), m=m(E),
dh — gk(Ex—E)n*+g,(E,—E)
4t =~ [N(E)=h1/7(E), h=hsy(n,E) =~ == o (20

Ina( Ena— E)M3(E)

—E—C‘lf Eh This explicit representation of the slow manifold is conve-
dr oM™ e(E.hm.n), nient for visualization, and can be used to describe explicitly
the slow motion in terms ofr(,E) as coordinates on the slow
manifold.

The fast foliation is a two-parameter set of plarfes
=const anch=const ink*={(n,h,E,m)}. The flow within
with one artificial small parameter. This embedding takes each of these planes is described by the system of two equa-
into account the real relationship between the characteristitons, which in the fast timd@ =t/ e state
time scales of dynamic variables during typical action poten- g
tial solution. This system is singularly perturbed with respect _E _ C,T,,le(E,h,m,n),

to e. aT
The corresponding system in the fast tifet/e is

dm _—
ey =LM(E)~m]/o(E), (19

dn 0 -my (21)
= en(E)~nl/7(E), gt (M=
Some typical phase portraits of this system at selected
values of parametersandh are shown on Fig. 7. As antici-

@ = e[ﬁ( E)—h]/m(E), pated from the formal speed analysis, which of the two vari-

dT ables is faster depends on their values, and the trajectories in
the (m,E) phase plane can be almost vertical or almost hori-
d_Echlf (E,h,m,n) zontal in different parts of it. The system can have from one
dT M EEIRER to three equilibria. The most typical picture observed during
g the selected action potential solution is the type shown in
m — Fig. 7(b), with two stable equilibria and one unstable equi-
d—T=[m(E)—m]/Tm(E), (19 librium. The trajectory starting from point labele& repre-

sents the behavior similar to the onset of the action potential

which is regularly perturbed with respect ¢o as shown in Figs. (@), 5(c), and 6, when the voltage expe-

First we consider the limig— + 0 numerically. The effect riences a period of stagnation or even a slight temporary
of this limit onto the shape of the action potential is shown indecrease, before tha gates open up and allow the fast up-
Fig. 6. We can see that the excitability of the model is pre-stroke of the voltage.
served, and we observe the jump upstroke to the excited The stable equilibria of all leaves constitute the attractive
state, which becomes infinitely fast for infinitely small  regions of the slow manifold. Let us describe the boundaries
However, the asymptotic embedding abolishes the smootbf these regions. We consider Eq21) with n and h as
return to rest, as in the system with smallthe return to rest constant parameters. The Jacobian of the right-hand sides of
includes a fast piece. This suggests that if this smooth returkqg. (21) at an equilibrium is

011902-8
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120 120 -
100} 100}
~80r 1 ~80f
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Eeo 1 E60
= ol R0
20} 20}
of o
_20 -20
107
(@ m (b)

FIG. 7. Phase portraits of the fast subsystem equdfahat selected values of parametérandn: (a) (n,h)=(0.61,0.01),(b) (n,h)

=(0.37,0.02),(c) (n,h)=(0.14,0.05). Solid lines: the vertical nuII-cIineisocﬁ(E)fm=0. Dashed lines: the horizontal null-clin&s
«f(E,h,m,n)=0. Filled circles: stable equilibria, asterisk: a saddle point. Dotted lines: selected trajectories.

J(E.m) CylofeldE Cylofe/om An explicit equation of the fold curve can be given if we
Em= = _ R 7 chooseE as a parameter. Then, resolving Eg3) with re-
HEM) | [7,m’ —(m—m) 7], ~Tm spect toh, m, andn, we get
However, since at an equilibrium=m(E), this reduces to . i p(E)
_ _ Ona 2(E) = u(E)’
; CulofeldE  Cylofelom 2
Em™— E/ Tr;ll — Tr;l m:m(E)y
An equilibrium is stable in linear approximation if and only B o a(E)—w(E)| 25
if Tr(Jgm) <0 and detfg)>0. We have | g WAE)-w(E)) 9
L 9fe where
Tr(JEm)ZCMlE_ 7'ml

_ _ (E)=m*(E)/[m*E)]’,
= —Cy'(gkn*+gnam®h+g) — 7,1 <0, (22) -
o , _ P(E)=(E i~ EW)(Ena— Ex) HIM*(E)],
for all physiologically sensible values of the variables, so the
first stability condition is always satisfied. Further, a1(E)=(Ena— E)(E—E))(Ena—E)) 7%,

0U2(E)=(Ena— E)(E—Ex)(Ena—Ex) % (26)

As n must be real, Eq(25) only makes sense whe(E)

: , : =—[0q.(E) — u(E)]/[a2(E) —u(E)]=0. The graph of
and the zeros of this fhuncluon dete_;n::jne the bounfd(ary Of t¢nctions w(E) and q; «(E) for the standard values of the
attractive regions on the slow manifold. In terms of the Struc'parameters is shown in Fig(@. There are two disjoint in-
ture of the phase portraits of the fast subsystems(El),  iqrvals

condition det(g,) =0 can be viewed asME-Vm)=0, i.e.,

tangency of the two null-clines at a double equilibrium. In Ee(—-937..,146...)U(41.5...458...),
terms of the geometry of the slow manifold, this condition .

means tangency of the fast flow to the slow manifold, i.e.in which q,(E)<u(E)<q,(E) and thusN(E)>0. Thus,
defines the fold curves. In more detail, the fold curve satisthe fold curve consists of two disjoint branches.

L, 4[dfe ofedm
de(Jg)=—Cy E—'—%E , (23

fies the following three equations, The cusp point is defined by condition that system Eq.
(21) has a triple equilibrium, or, equivalently, that the null-
E=0: f(E,h,mn)=0 clines of that system have second-order tangency, or, equiva-
T ’ lently, that the fold curvg24) is tangent to the fast leaves,
= i.e., planesn=const, h=const. This leads to the following
m=0: m—m=0, condition, additional to the three equations E2¢):
detem =0t F(Em=11EL EIM_o (o % IEdm g 2
een =0: FIEM=5+ 5 ge 0 @9 7E " omdE O @9
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The phase portraits resulting from the above analysis for
both values ok, are shown in Fig. 9. As the phase space of
the system is four dimensional, we depict only three-
dimensional projections of the portraits. We use Ef) to
draw the slow manifolds, and Ed25) to draw the fold

\ curves. Figure 9 also shows typical trajectories that go from
L 5\ a starting point(A) along the fast foliation until they reach
7% D 100 % 50 100 the slow manifold B), then along the slow manifold, until
@) E (mV) (b) E (mV) the fold curve C), where we have a jump return down the

fast foliation to the lower part of the slow manifoldD§.
FIG. 8. Functionsq;(E) (dot9, g,(E) (dash dots and u(E) Then the trajectories eventually move to the equilibrium
(solid) defined by Eq(26) for (a) E;=10.613 andb) E;=25. The  point (E).

fold line of the slow manifold corresponds to the value€afhere In the system with the modified value Bf, there exists,
w(E) is betweerqy(E) andq,(E). Vertical dashed line i€E=E,  theoretically, an alternative for the trajectories. Namely, with
~31.92, corresponding to the cusp point. a different flow on the slow manifold, the trajectories could

] o ] have returned to the equilibrium without a jump return, but
Using the definition of~(E), we find from here that th& oy going along the slow manifold, around the cusp point,
coprdlnate of the cusp points, if any, is given by the inflexiongg they did in Zeeman’s nerve model. However, as far as we
points of the graph of the functonM(E)=(E  could see, this possibility has not been realized in the HH
—Enagm3(E). For the standard parameter values, there isnodel at any reasonable variations of parameters, and the
only one such pointE, ~31.92. The value oN(E) at this  action trajectories always have a jump return.
point is negative,N(E, )~ —0.021. Therefore, the slow
manifold at the standard parameter values does not have cusp VIIlL A (1,2,)-ASYMPTOTIC EMBEDDING

points. o _ OF THE NOBLE (1962 SYSTEM
We now demonstrate that a variation of parameters in the _ _ _
HH system is possible that give$(E,)>0, so the slow Our formal analysis of the relative speeds in the N62

manifold has a real cusp point_ From Eas) we can see that model has shown than is the fastest variabl& andh are of
the sign ofN(E, ) depends on the relative location of the intermediate speeds comparable to each other,naisdthe
zeros of the functions); (E) — u(E) to E, . Note that the slowest variable. This understanding leads to the following
function w(E) is determined by the properties of the activa- (1,2,1)-asymptotic embedding:

tion gates of the Na channel, and variations of those are not

physiologically feasible. On the contrary, the parameters ﬂ=[F(E)—n]/T (E)

Ena, Ex, andE; are determined by the ratios of the intrac- dt men

ellular and extracellular concentrations of the corresponding

ions, which can be changed during the experiments, and can 1

vary physiologically depending on the ionic balance of the €157 ~ Cwm fe(E.hmn),

organism. From Fig. ®) one can see that the closest to the
E, root of q; (E)=u(E) is the left root ofq,(E), obvi-
ously strongly correlated with the root gf(E)=0, i.e.,.E
=E,. Incidentally, as we noted aboVg, is the least reliable
parameter of the model, as its value has not been measured, dm

but chosen using indirect considerations. We have found that €160——=[M(E)—m]/ 7n(E). (29)
by changingE, from its standard value of 10.613, we can dt

shift the left zero ofg,(E) — »(E) throughE, =31.92. No- _ ) o _

tably, this parameter variation does not involve functionFirst, we consider the limie;—0. The corresponding slow
M(E) whose inflexion point i€, , so the value oE, re- manifold is defined by equating the right-hand side ofrthe
mains unchanged. Figurgl8 shows what happens tg,,  equation to zero, which gives as a single-valued smooth
,, andu for E;=25. We haveN(E)>0 at the cusp point function of E,

E, =31.92. As aresult, &= 25 and all other parameters at _

standard values, we haWyE, )~0.0012>0, and there is a m=m(E).

cusp point, fb,n,E,m)~(0.0013,0.1860,31.92,0.6711).

Note that the conditioN(E,)>0 is equivalent to the This makesn a uniquely and everywhere defined function of
condition of having the Sing'e interval W|tN(E)>0, i_e_, the slower Variables, i.e., the slow manifold is uniquely and
the slow manifold has a real cusp point if and only if the tworeversibly projected onto thea(h, E) space. This slow mani-
fold lines join into a single fold line. This can be seen by fold is always attractive. This allows adiabatic elimination of
Considering the margina| case when the graphs of the fund[ariablem from the System. Figure. 10 illustrates results of
tions g,(E) and w(E) have a point of tangency; straightfor- direct numerical simulations, illustrating the accuracy of this
ward calculations show that this always happens at the poimirocedure. We see that the replacementafith m(E) has
of the zero of the second derivative Bf(E), i.e., atE, . virtually no effect on the shape of the action potential. In

h _
Ela:[h(E)_h]/Th(E)y
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e

SR

2t (m;)
(d (e) ®

FIG. 9. (Color online (a,d The three-dimensional projections of the phase portraits of the Hodgkin-Huxley systertb,a@nits
(2,2)-asymptotic embedding at=10"2, together with(c,f) corresponding action potentials, fea,d E,=10.613 andd,e E,=25. The
semitransparent surface is the slow manifold ). On (a,b,d,¢, the thick solid lines are the fold curves and the thin solid lines are their
projections on the coordinate plartes const,n=const, ande = const. The trajectories and their projections are shown by dotted lines. The
initial point of the trajectories is&,h,m,n)=(15,0.5961,0.0530,0.3177). The filled circle @he represents the cusp poinE (,m,n)
=(31.92,0.0013,0.6711,0.1860). Labdls-E mark the feature points of the solution on the coordinate plaresonst andn=const on
(a,b,d,¢ and are also marked on the graphs(ojf).

other words, numerical experiment shows that variabtzan n
be adiabatically eliminated from the system with good quan- ar —[N(E)—nl/7(E),
titative accuracy.

After this elimination, we have a (1,2) Tikhonov system, h
=[h(E)—h]/m(E),

61&
50 E 9 E =
_ S s e1g = Cu'Te(Eh.n), (29
% &
= o = 9 where
= S 08 _ _
& fo(E,h,n)=fc(E,h,m(E),n).
1005500 1000 1500 2000 = "0 200 400 600 800
(a) t (ms) (b) t (ms) This “reduced” system has two fast variablesindE and

only one slow variable. Therefore, the slow manifold is one
FIG. 10. The first asymptotic embedding in the Noble-1962 sys-dimensional, and the fast foliation is two dimensional. Thus,
tem Eq.(28) at e;=1 ande,—0, leading to adiabatic elimination Zeeman's conjecture on the cusp singularity in the slow
of the gatem. (a) The pacemaker potentials in the original system, manifold is not applicable here even in theory, and we are
€,=1 (solid ling), and in the reduced systers,=0 (dotted ling, bound to have a jump return.
for initial point (n,E,h,m)=(0.3276;-70.6426,0.6025,0.0786). This is confirmed by direct numerical simulations illus-
(b) The behavior ofm(t) (dashed lingand m(E(t)) (dotted line  trated in Fig. 11a). The pacemaker potentials in the system
during one pacemaker potentji&(t) X 0.01 shown by solid line for ~ with small e;,=0 are somewhat shorter, mainly at the ex-
comparisoit The two curvean(t) andm(E(t)) are indistinguish- ~ pense of the slow returns fan =1 becoming jump returns
able at this resolution. for e1—0, and also by further quickening of the fast onsets.
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N

o
o

0 100 200 300 400 500 ~ 0 50 100

t (ms) (b) T (ms)

RE(T)

10 % det (J) , Tr (J)

(a)

FIG. 11. The second asymptotic embedding in the Noble-1962 _SOE (mV) 0
system Eq(29) at €;—0. (@) Singular limit. Solid line: solution of
the original system¢;=1), dotted line, close to the reduced sys-  FIG. 12. Graphs of 18detJ(E) (solid line, ms?) and TrQ)
tem (e,=107%), for initial point (n,E,h)=(0.3276, X(E) (dashed lines, ms), whereJ=Jg, is defined by Eq(31).
—70.6426,0.6025)(b) The corresponding regular limit. Same ini-

tial conditions as in(a), in the fast timeT;=t/¢;. &(E,h) { C[,,laf_E/&E C,\_,,laf_E/&h]

50

Correspondingly, the period of oscillations is shorter. An- =" 4(E,h) [7oh’ —(h—h)7/]7; 2 — 7t

other observation can be made on the regular lifRig.

11(b)], i.e., the behavior of the system in the fast time: the

overshot of the voltage at the onset of the pacemaker poten-

tial is due to the interaction of the two fast variableandh,

as it is preserved when the slow motionrofs frozen. _
The one-dimensional slow manifold of EQ9) is defined becausen=h(E) at an equilibrium. The stability in linear

CuldfeldE  Cylafelon

— 17 -1
™ 1h/ -

(31)

by equations approximation requires Tdg,) <O and det{gn)>0. We
have
h—h(E)=0. fe fe ofgdm
J 7 0 m
_~-1%E 1~ 2B TTERTTY 1
Ten)=Cu" 5 =7 =Cw (aE " om dE) h

fe(E,h,n)=0.
) . o _Unlike Eg. (22), we are not guaranteed that this function is
This system of equations cannot be explicitly resolved W'thnegative in  the physiological region, since
respect to E,h),_but_is easily resol\(ed with respect to, (), (ofe/am) (dn_VdE)>O. The graph of T (E) in the
giving parametrization of the manifold i, physiological range oE is shown in Fig. 12. It shows that
stability condition TrQg,,)(E)<O0 is violated in a rangé

h=h(E), e[E%, ,E2], whereE} ~—68.25,E2,~ —57.01.
Further,
n=ngu(E) _
S _ , 4[dfe ofedhn
=[{(m*hgna+ Ona) (Ena— E) + 0k, (E) (Ex—E) deUen==Cu m’|\ E+* 21 gg).  ©®2
o _ P _ 1/4
+9I(Ei—E)JHgk(E-E}]™ As can be seen from Fig. 12, condition dk{)<O is

o . . satisfied in intervalsE e (—%,E3.) U(E3er,Eded U(Efers

~ The fast foliation consists of planes=const, with coor- | oy, whereE?l = —77.37,E3, = —55.54,E3 = —47.24,
dinates (,E). The dynamics on the fast leaves in terms ong =—20.27
e 27.

the fast timeT is described by the system Thus, we see that the interval of instability due to the
positive trace, EX,,EZ), lies wholly inside the interval
(Elet.E3e) Where the equilibria are unstable due to negative
determinant. Therefore, the stability of the equilibria of the
fast subsystem, hence attractive and repelling pieces of the
dn  _ slow manifold, can be determined based on the sign of the
—=[h(E)—h]/m(E), (30) determinant only, at least for the standard values of the pa-
dT rameters. And this criterion produces three disjoint attracting
pieces of the slow manifold.
wheren is a constant parameter defining the leaf. Incidentally, the sign of defi;,), and thus the stability of
The stability of an equilibrium in the fast subsystem is different parts of the slow manifold, can be deduced from the
determined by the Jacobian of the right-hand side of Egslope of its ,E) projection. Indeed, this projection is de-
(30), fined byn=ngy(E), where

dE
g7 =Cw'fe(Ehn),
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n =03 n = 0.636

FIG. 13. Phase portraits of the fast leaves at the specified valuedaished lines, thE=0 isoclines; solid Iinesh:O isoclines; dots,
selected trajectories; filled points, stable equilibria; asterisks, saddle points.

The selected trajectory, representing the pacemaker poten-
tial, has slow motion pieces along the upp€iY) and lower
(EA) branches of the slow manifold. Between these slow
motions, there are fast transitions from the lower branch to
the upper branchABC), which is the jump onset with an

fe(E,h(E),nsu(E))=0.

We differentiatef_(E), and thus find the slope of the slow
manifold projection as

dn pra n 1o s dh overshot of the pacemaker potential, and from the upper
SM_ ( el ) (_E +E :) _ branch to the lower branclDE), which is the jump return.
dE an JE = oh dE These fast transitions occur near the fold points on the slow

manifold. The label#\—E correspond to the feature points of
the pacemaker potentials shown in Fig. 2. This fast-slow be-
havior is exaggerated on pan@d) where the fast pieces of
trajectory are visually vertical.

The pacemaker potential trajectory does not ever come
close to the intermediate stable branch of the slow manifold.
As can be seen from Fig. (83, the angle between the null-
long asE>Ey, i.e., during any physiologically sensible clines at the middle stable equilibria of the fast subsystem is
action-pacemaker potential. very small and the stability of these equilibria must be very

Thus, the stable points of the slow manifold are thoseweak. Indeed, the numerical experiment shows thag;at
where the slope of the projection of the slow manifold to the=1, there are no trajectories that would stay along the
(E,n) plane, see Figs. 14,b, is negative. middle branch of the slow manifold for any considerable

Figure 13 shows the different types of phase portraits otime.
the fast subsystem, taken at selected valuas dhese por- Note that there is no stable equilibrium in the model at the
traits illustrate the null-clines, equilibria, and selected trajec-standard parameter values, and so the selected trajectory rep-
tories. In Fig. 14, one can see also the projection of the slowesents auto-oscillations. With this fact in mind, the overall

Comparing this with Eq(32) and noticing that

fe(n)
an

=4gn’(Ex—E),

we see that defig,,) has the opposite sign tngy,/dE as

manifold and the selected trajectory to the ) plane, for
the original systeme;=1 [panel(a)] and for the reduced appropriate parameter region that gives limit cycle behavior.
systeme; — +0, represented by, =102 [panel(b)].

behavior is comparable to that of Zeeman'’s heart model in an

The only essential difference in the morphology of the pace-
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FIG. 14. (a) The projection of the phase portrait of the N62 system onto thg)( plane. Solid and dashed lines: the slow manifold.
Dotted line: a selected “pacemaker potential” trajectory. Vertical dot-dashed lines: positions of the selected fast leaves shown (b)Fig. 13
Same aga), with the trajectory of the embedded systeneat 10 3. (c) The pacemaker potentials of the origirisblid line) and embedded
(dotted ling systems. Letterg, B, C, D, E mark feature points of the pacemaker potential trajectory.
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maker potential is the nonmonotonic onset, represented byanifold is only one dimensional, and therefore, in accor-
the ABC piece of the trajectory, including the overshot. This dance with Zeeman’s reasoning, the slow return is impos-
nonmonotonicity is a consequence of the behavior of trajecsible. Indeed, the action and resting branches of the slow
tories in the corresponding two-dimensional fast subsystenmanifold have been found to be separated in the phase space.
as illustrated by the portrait on the fast lea#=0.3, Fig. |n contrast, the HH model has two slow variables, and a
13(a). This is essentially different from what is possible in two-dimensional slow manifold. Therefore, there exists a

one-dimensional fast subsystems, where the transition is ajneoretical possibility of this manifold to have a cusp catas-

ways monotonic. trophe in its mapping to the space of slow variables, and a
possibility for trajectories to return from the upper to the
IX. DISCUSSION lower branch of the slow.manifold by going along that mani-
fold around the cusp point. Indeed, we have found that, al-
We have analyzed the asymptotic behavior of two classithough such a catastrophe is not observed in the model at the
cal models of biological excitable systems, the Hodgkin-standard values of the parameters, it may appear at appropri-
Huxley (HH) model of a nerve axon and Noble-196262)  ate, physiologically feasible variations of the parameters.
model of a heart muscle fibre. Although the latter was only eHowever, the existence of this catastrophe does not automati-
modification of the former, we have found that their cally imply that trajectories will necessary go around the
asymptotic properties differ substantially. The least surpriseusp point, and as the numerical calculations show, in fact
ing difference is the longer duration of the pacemaker potenthey do not, at least at the parameter values studied.
tials in the N62 model than the action potentials in the HH  Notice that the very fact of the jump return does not de-
model, as it is a direct consequence of the speed of the slopend on details of the analytic work, but is a direct result of
potassium current decreased by the two orders of magnitudbe chosen parametric embedding, i.e., the way the artificial
in N62 compared to HH. However, the differences do notsmall parameter is introduced in the model to make
stop there. asymptotic analysis possible. Indeed, this property can be
First of all, the asymptotic structure of the two models isestablished by direct numerical calculations of trajectories in
different: whereas the HH model is a (2,2) model, i.e., hasystems with progressively decreasing values of the artificial
two slow and two fast variables, the N62 model is a (1,2,1)parameter. This is a convenient way to establish properties of
model, i.e., has 1 slow, 2 fast, and 1 superfast variable. Ban asymptotic embeddingrior to the asymptotic analysis of
virtue of the simple structure of the superfast system, whichthat embedding.
always has a unique and stable equilibrium, the N62 model is Applied to the character of the return in the HH and N62
readily reduced to a (1,2) system, with one slow variable ananodels, the present results are less than entirely agreeing
two fast variables. After that, the HH and N62 models have awith intuitive impressions that one might have observing the
common feature, which makes them different from the twosolutions of the original models. Indeed, the action potential
Zeeman'’s models: two fast variables in both HH and reduceéh the HH model definitely looks more triangular than rect-
N62, as opposed to one fast variable in both Zeeman'’s heasingular, which was the original impulse for Zeeman'’s con-
and nerve models. This feature appears to be not just a tecfecture on the role of the cusp catastrophe. And yet, this
nical difference, but brings about new phenomena that arproperty is not conserved in the asymptotic embedding. The
not possible in systems with one fast variable. In the HHpacemaker potentials in the N62 model are less triangular,
model, the feature we found is less prominent: it is a slightand the question of whether the return to the lower potential
delay of the fast onset of the action potential, even with itsshould be considered fast or slow may be a subjective matter.
slight decrease in the beginning. In the N62 model, this idt is, however, certain that the slope of the return is much
much more prominent: it is the overshot in the beginning ofsmaller than the slope of the onset. In the asymptotic embed-
a pacemaker potential. This last feature is quite typical ofling considered, more specifically, in the lirait— + 0, this
many cardiac excitability models and of real cardiac cell’sdifference is not reflected at all, and both slopes become
behavior; thus, we believe that the mechanism of the oververtical.
shot in the N62 model may be prototypical for more detailed Thus, we conclude that if the slow character of the return
and up-to-date models. An important lesson here is that ifs of importance, then the asymptotic embedding we used
any asymptotic embeddings in such models are to retain thisere should be considered unsatisfactory. At this point, we
property, theymusthave at least a two-dimensional fast fo- should recall that there are infinitely many asymptotic em-
liation. beddings, i.e., infinitely many ways artificial small param-
Another characteristic feature of the solution is the “re- etefs) can be introduced to a given system of equations. The
turn,” i.e., the repolarization to the resting potential in the asymptotic embeddings we used here were both of the
excitable HH system and to the lower phase of oscillations iffikhonov fast-slow-type, where small parameters appear as
the oscillatory N62 model. The two Zeeman’s models differfactors at some of the time derivatives, or as factors at some
in that the nerve model, at appropriate initial conditions, ha®f the right-hand sides, depending on the choice of the time
a smooth return, while the heart model always has a jumgcale. The number of ways such embeddings can be done for
return. In our analysis, both the HH nerve and N62 heart system of only a few equations is limited, and considering
models have proved to demonstrate jump returns. Howevethe formal speed analysis that we performed in Sec. VI, there
the reasons for that are different in the two models. In theare practically no alternativdd9]. This class of perturbed
N62 model, there is only one slow variable, thus the slowsystems is the best studied, and a huge amount of literature
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dedicated to singular perturbations and fast-slow systems iorrespond to bursts of high frequency oscillations on the
practically restricted to this class: e.g., ittise onlyclass wake of the action-pacemaker potential; indeed, such bursts
considered in a very comprehensive revigl8]. Thus, the are observed in some mod¢ls]. The middle stable branch
formal analysis of asymptotic properties of realistic excitablein N62 model was completely unexpected. If it was more
systems ought to have started with this embedding. Howevepronounced, it could correspond, e.g., to other “minor” ac-
we now see that analysis restricted to this class may not bion potentials with smaller amplitude and much shorter du-
sufficient, and other types of embedding should be considration than the normal potentials. This possibility is not real-
ered. And this may involve interesting mathematical quesized in the N62 system at normal parameter values, and so
tions, as the mathematical theory of non-Tikhonov fast-slowcould be considered as an artifact of the parametric embed-
systems is very little developed yet. ding. But again, the fact that such a feature takes place albeit
There are two more points to notice in the analysis of theormally, suggests that in some similar systems it may appear
N62 model, the possibility of fast oscillatory instability and indeed. We are not aware of any theoretical or reliable ex-
middle stable branch of the slow manifold. Oscillatory insta-perimental description that could be associated with such
bility is impossible in systems with one fast variable, but isminor potentials; however, there are certain experimental
theoretically possible in systems with two fast variables, andacts which do not yet have firm theoretical explanations,
would be characterized by change of sign of the trace of thand for which such minor potential explanation may look
Jacobian at the equilibrium at a positive determinant of theplausible[17].
Jacobian, i.e., a Hopf bifurcation. This possibility is not rea-
lised in the N62 model, as Fhe change of sign of the trace ACKNOWLEDGMENTS
happens at negative determinant; however, the fact that such
a change happens is suggestive of the fact that this kind of V.N.B. is grateful to D. Barkley and 1.V. Biktasheva for
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