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Comparison of asymptotics of heart and nerve excitability
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~Received 11 February 2003; published 11 July 2003!

We analyze the asymptotic structure of two classical models of mathematical biology, the models of elec-
trical action by Hodgkin-Huxley~1952! for a giant squid axon and by Noble~1962! for mammalian Purkinje
fibres. We use the procedure of parametric embedding to formally introduce small parameters in these
experiment-based models. Although one of the models was designed as a modification of the other, their
structure with respect to the small parameters appears to be entirely different: the Hodgkin-Huxley model has
two slow and two fast variables, while Noble’s model has one slow variable, two fast variables, and one
superfast variable. The singular perturbation theory of these models adequately reproduces some features of the
accurate numeric solutions, such as excitability and the shape of the voltage upstroke, but fails to reproduce
other features, such as the relatively slow return from the excited state, compared to the speed of the upstroke.
We present arguments towards the viewpoint that contrary to the conjecture proposed by Zeeman~1972!, for
these two models this failure is an inevitable consequence of the Tikhonov-style appearance of the small
parameters, and a more adequate asymptotic description may only be achieved with small parameters entering
the equations in a significantly different way.

DOI: 10.1103/PhysRevE.68.011902 PACS number~s!: 87.10.1e
r b
ed
o

ffe
m

a
ng
n
a
ed
a

o
rl
f
i-
.

is
e
di
re
pa

d
e
e

m
ve
a
ol
e

s in
vise
ost
ugh
l’s
ties
ion
r-
he
en

sys-
a-

-
ple
nd
ore
ble
ed

ee-
od-
d
ven

m
a

One
and
gu-

ed
hat
m-
c-
its
I. INTRODUCTION

The idea of the present study came from a 1972 pape
Zeeman@1#, which was one in his series of works dedicat
to possible applications of the then new catastrophe the
@2#. In that paper, Zeeman has analyzed an apparent di
ence between two sorts of biological excitable syste
nerve and heart, and conjectured that this difference m
come as a consequence of them being described by si
larly perturbed systems of equations, with the slow ma
folds demonstrating catastrophes of different types. Am
ingly, in the following 30 years, there were no publish
papers directly testing this conjecture. To fill in this gap, w
one reason to undertake this study.

The other reason was more practical. Mathematical m
els describing biological excitable systems, particula
nerve and heart tissues, are historically the first, and so
the best, in terms of quantitative description of truly biolog
cal phenomena, based on solid experimental information
special place in this set belongs to Hodgkin and Huxley’s@3#
model of the squid giant axon, and Noble’s@4# model of the
cells of Purkinje fibres of mammalian heart. These were h
torically the first and still the simplest in that family. Sinc
then, the progress in development of realistic models of
ferent kinds of cells has been enormous, and the cur
models achieve remarkable complexity and accuracy,
ticularly for cardiac cells@5,6#. One disappointing, from a
theoretical physicist’s point of view, feature of all these mo
els is a seemingly absolute necessity of numerical treatm
since they are high-order@at least, of order 4, as for both th
Hodgkin-Huxley~HH! and Noble-1962~N62! models# non-
linear systems of differential equations, and do not ad
exact analytical solution. Purely numerical study, howe
good the computers may be, always has well known dis
vantages, e.g., lack of insight into dependence of the s
tions on the parameters. Thus, from the very beginning th
1063-651X/2003/68~1!/011902~15!/$20.00 68 0119
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were attempts to understand the behavior of the solution
these models by some asymptotic methods, and to de
simpler models that admit analytical treatment. The m
prominent example of such study was the paper by FitzH
@7#, who has shown that a modification of Van der Po
nonlinear oscillator can demonstrate qualitative proper
very similar to those of the HH system, and that a collect
of appropriate two-dimensional projections of the fou
dimensional trajectories of the HH system look similar to t
phase portrait of the modified Van der Pol system. Wh
considered as a singularly perturbed system, FitzHugh’s
tem allowed a qualitative analysis explaining its main fe
tureswithout using a computer. Ever since, FitzHugh’s sys
tem and its numerous variations are very popular as sim
systems qualitatively similar to real excitable systems, a
allowing both a better qualitative understanding, and a m
efficient numerical treatment of large numbers of excita
cells, than detailed, realistic models. Yet, these simplifi
models are only in qualitative and not in quantitative agr
ment with the real systems. Moreover, these simplified m
els are not in any wayderivedfrom the realistic systems, an
therefore there is no way to be sure that they reproduce e
the qualitative effects correctly.

This makes a case for deriving simplified models fro
realistic models, by exploiting their real properties, via
clearly defined set of assumptions and transformations.
such attempt was made as early as 1973 by Krinsky
Kokoz @8# who have considered the HH system as a sin
larly perturbed system to reduce its order to 3, and anad hoc
empirical observation to further reduce it to 2, which end
up with a system whose phase portrait looked similar to t
of FitzHugh’s system, but already without any small para
eters left. Although very interesting in a historical perspe
tive, that paper failed to have a more lasting impact in
time, in particular, because thead hocmethods used there
could not be transferred to more sophisticated models.
©2003 The American Physical Society02-1
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R. SUCKLEY AND V. N. BIKTASHEV PHYSICAL REVIEW E68, 011902 ~2003!
With the advent of computational biology of extend
biological systems including large numbers of excitable e
ments, such as large neural networks or whole heart,
question of faithful simplifications of detailed models gai
more and more of practical importance. Various kinds
simplified models of excitable systems, such as FitzHu
and its variations, and even further caricaturelike simplifi
tions, such as integrate-and-fire neurons, cellular autom
etc., have been used in large scale computations as a ‘‘
man’s substitute’’ of realistic models. Now the level of u
derstanding achievable at such caricature level is to a c
siderable extent exhausted. On the other hand, the deve
ment of computer technology itself has not been in pace w
the demand from applications, e.g., in biomedical engine
ing in cardiology. There have been several attempts to
velop models which would mimic the properties of realis
models but would be less computational expensive, see,
Refs.@9–12#. However, all these attempts so far have be
at least in some points, phenomenological, and thus have
same principal disadvantages as FitzHugh’s attempt,
lack of confidence in quantitative and perhaps even qua
tive predictions. Hence, development of methods of relia
and verifiable derivation of simplified models, qualitative
and quantitatively reproducing relevant properties of the
tailed models, or deviating from them in a controllable wa
can present a considerable advantage for computations
applications. We believe that the methods of such derivati
should be developed starting from the simplest cases,

TABLE I. Parameters and functions of the Hodgkin-Huxley a
Noble-1962 models.

Parameter or Hodgkin-Huxley Noble-1962
function system system

CM 1 12

am(E)
0.1~2E125!

e(2E125)/1021

0.1~2E248!

~e(2E248)/1521!

an(E)
0.01~2E110!

~e(2E110)/1021!

0.0001~2E250!

~e(2E250)/1021!

ah(E) 0.07e2E/20 0.17e(2E290)/20

bm(E) 4e2E/18 0.12~E18!

~e(E18)/521!

bn(E) 0.125e2E/80 0.002e(2E290)/80

bh(E)
1

~e(2E130)/1011!

1

~e(2E242)/1011!

ḡNa 120 400

ḡNa1
0 0.14

ḡK 36 1.2

ḡK1
(E) 0 1.2e(2E290)/50

10.015e(E190)/60

ḡl 0.3 0

ENa 115 40
EK 212 2100
El 10.613 260
01190
-
e

f
h
-
ta,
or

n-
p-
h
r-
e-

g.,
,
he
.,

a-
e

-
,
for
s

nd

then generalized to more sophisticated models. The pre
paper deals with the two simplest cases.

The structure of this paper is as follows. In Sec. II, w
introduce Hodgkin and Huxley’s~1952! and Noble’s~1962!
systems of equations. In Sec. III, we present the relevant
of the singular perturbation theory of fast-slow systems, s
as the concepts of fast foliation and slow manifold. Sect
IV describes two Zeeman’s toy models and their analysis
an illustration of the method we use later for the HH a
N62 models. Section V describes parametric embedding,
formal procedure of introducing artificial small parameters
enable asymptotic treatment of experiment-based mod
which do not have parameters but only experimentally m
sured constants. In Sec. VI, we analyze the relative speed
the four variables in both the HH and N62 models, to ass
them the roles of slow and fast variables. The main res
are presented in Secs. VII and VIII, where we apply all t
described methods to the HH and N62 models. The disc
sion of the results is presented in Sec. IX.

II. HOGKIN-HUXLEY’S 1952 AND NOBLE’S 1962
SYSTEMS OF EQUATIONS

Both the HH and N62 systems of equations can be writ
in the same form,

dE

dt
5CM

21f E~E,h,m,n!,

dh

dt
5ah~E!~12h!2bh~E!h5@ h̄~E!2h#/th~E!,

dm

dt
5am~E!~12m!2bm~E!m5@m̄~E!2m#/tm~E!,

dn

dt
5an~E!~12n!2bn~E!n5@ n̄~E!2n#/tn~E!, ~1!

where

f E~E,h,m,n!5@ ḡKn41ḡK1
~E!#~EK2E!1~ ḡNam

3h1ḡNa1
!

3~ENa2E!1ḡl~El2E!

is the total current passing through the membrane meas
in mA/cm2, t is time measured in milliseconds,E is the
transmembrane voltage measured in millivolts,Ek , k
5Na,K,l are the reversal potentials of sodium, potassiu
and leakage currents, respectively, measured in the s
scale asE, ḡk are corresponding maximal specific condu
tances in mmho/cm2, n, m, h are dimensionless ‘‘gating’’
variables, CM is the specific membrane capacitance
mF/cm2, a j (E), b j (E), j 5h,m,n, are gate’s opening and
closing rates in ms21, j̄ (E)5a j /(a j1b j ) are the gates’ in-
stant equilibrium values, andt j (E)51/(a j1b j ) are the
gates’ dynamics time scales in milliseconds. The stand
values of parameters and forms of the functions used in
~1! are different for the HH and N62 models, and are su
marized in Table I.
2-2
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COMPARISON OF ASYMPTOTICS OF HEART AND . . . PHYSICAL REVIEW E68, 011902 ~2003!
In the original Hodgkin and Huxley paper@3#, the trans-
membrane voltageV was measured with respect to the re
ing potential, and in the direction opposite to the one
cepted later, so the variableV of Ref. @3# and the variableE
in Eq. ~1! are related by

E52V

and the resting potential in the HH model corresponds toE
50 by definition; in fact, parameterEl was not measured bu
chosen with a high precision to ensure that.

The N62 model was formulated in terms of true expe
mentally observed potentials. It was obtained by modifi
tions of the HH system, taking into account the differences
the electrophysiology of the membrane of Purkinje cells
mammalian hearts from the membrane of the giant sq
axon, known at that time. The most obvious change i
100-fold increase in the value oftn(E), which corresponds
to a much longer plateau of the action~pacemaker! potential
duration in Purkinje cells compared to that in the ner
membrane. The differences between various volta
dependent functions in these two models are illustrated
Fig. 1.

Figure 2 is the action and pacemaker potentials for
above system of equations~1!. The HH action potential, i.e.
the time course of the transmembrane voltage after a r
tively small but overthreshold deviation from the stable re
ing state, has a triangular shape and relatively short dura
The N62 pacemaker potentials, i.e., the time course of
transmembrane potential during spontaneous oscillations
much longer and have a more rectangular shape, with
characteristic ‘‘overshot’’ spikes labeled byB.

FIG. 1. Properties of the channel gates’ in the Hodgkin-Hux
~HH! system and Noble-1962~N62! system.~a,b! The quasistation-

ary values of the gatesy5m̄,h̄,n̄ in the HH ~a! and N62~b! sys-

tems. Solid lines,m̄(E); dash-dotted lines,h̄(E); dashed lines,

n̄(E). ~c,d! The time scalest in the HH ~c! and N62~b! systems.
Solid lines,tm(E); dash-dotted lines,th(E); dashed lines,tn(E) in
~c!; and 0.01tn(E) in ~d!.
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The difference in the morphology and in quantitati
characteristics of the solutions of the two models is w
understood physiologically. In this study, we aim to see w
mathematical features of these systems provide for these
ferences, particularly the qualitative ones. Zeeman@1# sug-
gested that this difference may be understood in terms
asymptotic properties of the underlying models considered
singularly perturbed ‘‘fast-slow’’ systems, and suggested t
a priori model systems demonstrating the required featu
In this study, we will use the same asymptotic approach
Zeeman did, but base the analysis on actual HH and N
models. Although the asymptotic theory of fast-slow syste
is well known ~see, e.g., Ref.@13#!, we give its brief over-
view in the following section, for reader’s convenience a
also to introduce the terms and notations we use later.

III. THE SINGULAR PERTURBATION THEORY
OF THE FAST-SLOW SYSTEMS

We consider a system ofk11k2 first-order autonomous
ordinary differential equations fork11k2 dynamic variables,
of which k1 are ‘‘slow’’ and k2 are ‘‘fast.’’ We denote the
vector of slow variablesx1PRk1 and the vector of fast vari-
ablesx2PRk2. Then the system of equations is

dx1

dt
5 f 1~x1 ,x2!, ~2!

e
dx2

dt
5 f 2~x1 ,x2!, ~3!

wheree.0 is a small parameter. The transformation of tim
t5eT brings this system to the form

dx1

dT
5e f 1~x1 ,x2!, ~4!

dx2

dT
5 f 2~x1 ,x2!. ~5!

Systems~2!, ~3! ~the slow-time system! and ~4!, ~5! ~the
fast-time system! are equivalent to each other for every fixe
e.0, but have different properties in the limite→10.

y

FIG. 2. ~a! Action potential in the Hodgkin-Huxley system: so
lution for the initial point (E,m,n,h)5(15,0.0530,0.5961,0.3177)
~b! Pacemaker potential to Noble’s system: solution for the ini
point (E,n,m,h)5(270.6426,0.3276,0.0786,0.6025). The labe
mark feature points of the graphs referred to in the asympt
analysis to follow.
2-3
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R. SUCKLEY AND V. N. BIKTASHEV PHYSICAL REVIEW E68, 011902 ~2003!
The fast-time system ate50 becomes

dx1

dT
50, ~6!

dx2

dT
5 f 2~x1 ,x2!, ~7!

which means that the slow variablesx1 remain constant, and
only the fast variablesx2 vary. A condition x15x1

0 for a
constantx1

0 defines ak2-dimensional manifold$(x1
0 ,x2)ux2

PRk2% in the phase space of the system$(x1 ,x2)%
5Rk11k2. All such manifolds for all possiblex1

0PRk1 fill the
whole of the phase spaceRk11k2. This k1-parametric family
of nonintersecting k2-dimensional manifolds filling the
whole (k11k2)-dimensional space is called thefast foliation
of that space, because it describes evolution of the system
the fast-time scale. Each of the manifoldsx15x1

0 makes a
leaf of the fast foliation.

The slow-time system ate50 becomes

dx1

dt
5 f 1~x1 ,x2!, ~8!

05 f 2~x1 ,x2!, ~9!

i.e., a system of differential equations~8! with finite con-
straints Eq. ~9!. The finite constraints define
k1-dimensional manifold in the (k11k2)-dimensional phase
space, which is called theslow manifold. This also defines
the fast variablesx2 as implicit functions of the slow vari-
ables,x25X(x1), which reduces the original system ofk1
1k2 equations to thek1 equations on the slow manifold
which can be written in the form

dx1

dt
5 f 1„x1 ,X~x1!…. ~10!

If the explicit solution of Eq.~9! in the form x25X(x1) is
possible, i.e., if the slow variablesx1 can be chosen as coo
dinates on the slow manifold, the procedure is often called
adiabatic eliminationof the fast variablesx2. Otherwise, the
procedure still can be used, but another system of coo
nates on the slow manifold is required.

The rigorous grounds for the asymptotic analysis of fa
slow systems have been laid down by classical theorems
to Tikhonov ~1952! @14# and Pontryagin~1957! @15#.

Tikhonov’s theorem states conditions when a typical
lution of the exact system starts with initial conditions a
point (x1

0 ,x2
0) demonstrating a ‘‘regular’’ behavior, which

consists of two parts. The first part of a regular solution i
transient period lasting for the time intervalt}e or T}1,
close to the solution of Eq.~7! within the leafx15x1

0 starting

from (x1
0 ,x2

0) and approaching the point„x1
0 ,X(x1

0)…. The
second part is slow motion along the slow manifold, it ru
on the time scalet}1 or T}e21 and the solution remain
close to the solution of Eq.~10! with x25X(x1) with initial
conditions„x1

0 ,X(x1
0)…. Apart from the technical conditions
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the essential assumptions for this regular behavior are
the slow part of the trajectory goes within an attracting
gion of the slow manifold, defined as set of equilibria of t
fast subsystems Eq.~7! that are stable~attractive! in linear
approximation, and that the initial point (x1

0 ,x2
0) is within the

basin of attraction of the equilibrium„x1
0 ,X(x1

0)… in terms of
the fast-time system~4!, ~5!.

Pontryagin’s theorem states conditions for the trajecto
leaving off the slow manifold to start movement along t
fast foliation. Typically, that happens when a trajectory mo
ing along the slow manifold reaches the boundary of
attracting region of that manifold, provided that the slo
trajectory is transversal to that boundary. If after taking
the slow manifold, the trajectory then happens to be in
basin of another stable part of the slow manifold, then,
Tikhonov’s theorem, it will again have a quick transie
along the fast foliation with subsequent slow motion alo
the slow manifold.

Thus, a trajectory with a regular behavior in a fast-slo
system will consist of slow and fast pieces. Transition fro
fast to slow motion happens when a fast piece of traject
reaches the slow manifold; and transition from slow to f
motion happens when a slow piece of trajectory reaches
boundary of the attracting region of the slow manifold. T
slow pieces of trajectory are described by a system ofk1
differential equations, and the fast pieces are described
system ofk2 differential equations. That means, both sy
tems are simpler than the original system, thus may ad
analytical solution, more exhaustive qualitative analysis,
at least be easier for numerical treatment, due to a sma
dimensionality and absence of the small parameter.

For the purposes of this paper, we will ignore some fi
details that make life more complicated than the above i
alized picture. E.g., the exact moment of the take-off a
small but fixed value of the small parameter depends on
initial conditions in a nontrivial way; namely, some ver
small fractions of trajectories continue to travel along t
slow manifold well into the repelling region before taking o
~so called ‘‘duck’’ solutions!. A more detailed discussion o
this and other related questions and a comprehensive b
ography can be found in Ref.@13#.

Tikhonov @14# also presented a generalization of the
duction theorem, for hierarchical systems that depend
more than one small parameter, for instance,

dx1

dt
5 f 1~x1 ,x2 ,x3!, x1PRk1,

e1

dx2

dt
5 f 2~x1 ,x2 ,x3!, x2PRk2,

e1e2

dx3

dt
5 f 3~x1 ,x2 ,x3!, x3PRk3, ~11!

where simultaneouslye1→10 ande2→10. In this case, a
typical trajectory would consist of~1! a superfast part when
only x3 change whilex1 andx2 remain constant during time
t}e1

21e2
21, followed by ~2! a fast part whenx3 and x2
2-4
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COMPARISON OF ASYMPTOTICS OF HEART AND . . . PHYSICAL REVIEW E68, 011902 ~2003!
change, so thatf 3(x1 ,x2 ,x3)'0, while x1 remain constant,
lasting t}e1

21, followed by ~3! slow motion when all three
sets of variables change withf 3(x1 ,x2 ,x3)'0 and
f 2(x1 ,x2 ,x3)'0, on the time scalet}1.

We will say that system~2!, ~3! hasasymptotic structure
(k1 ,k2), and system ~11! has asymptotic structur
(k1 ,k2 ,k3).

IV. THE TWO ZEEMAN’S MODELS

Zeeman@1# has considered two ‘‘toy’’ models, demon
strating two different types of asymptotic behavior of t
shape of the action potential, which he believed resemb
the shapes of the action potentials in nerve and in car
tissue. Thus, he called them the ‘‘nerve’’ model and t
‘‘heart’’ model. Without discussing how much these mode
actually relate to nerve or heart tissue, we briefly disc
them here, for the sake of introducing the key concepts
describing the method that we will subsequently apply to
HH and N62 systems.

Zeeman’s heart model has asymptotic structure (1,1)
can be written in the form

ḃ5x2x0 ,

e ẋ52~x32x1b!, ~12!

whereb is the slow variable andx is the fast variable. This
example is very similar to the famous system of equati
due to FitzHugh@7#. The slow manifold of this system is
cubic parabola

f ~x,b!5x32x1b50.

The slow variableb cannot be chosen as a coordinate on t
slow manifold, as this equation cannot be resolved with
spect to the fast variablex. But it can be easily resolved with
respect tob, and sox can be used as a coordinate.

The stable~attracting! regions on the slow manifold ar
defined by an additional condition that] f /]x.0 and the
unstable~repelling! region corresponds to] f /]x,0. The
boundary between these two regions satisfies the syste
equations

f ~x,b!50,

] f

]x
~x,b!50,

which gives two solutions, (x1 ,b1)5(1/A3,2/3A3) and
(x2 ,b2)5(21/A3,22/3A3). These are thefold points
where the fast leaves are tangent to the slow manifold
about these points, trajectories moving along the slow m
fold would take off from it.

Since we have only one fast variable, the fast foliation
a family of linesb5const. In the leaves withbP(b1 ,b2) the
fast subsystem has three equilibria, of which two are sta
and separated by the unstable one.

The phase portrait of the system is shown in Fig. 3~a!. The
solid lines represent stable pieces of the slow manifold,
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fined byx32x1b50 and 3x2.1, and the dashed line is th
unstable piece, defined byx32x1b50 and 3x2,1. They
are separated by fold points shown by open circles. The fi
point ~E! of the flow on the slow manifold is located on th
attracting branch and therefore is stable.

A selected trajectory is shown with dotted line and a
rows. Starting from pointA, it reaches the upper stabl
branch of the slow manifold (B), travels along it leftwards
until reaching the left fold point~C! and cannot go any fur-
ther as it has reached the repelling piece of the slow m
fold. Therefore the trajectory has to make a jump from t
fold point to the pointD on the lower stable branch of th
slow manifold, and then travel back along it to the stab
equilibrium pointE. Thus, trajectoryABCDE represents a
typical action potential. TheAB part corresponds to the jum
onset. TheBC part represents the slow excitation part, t
action potential plateau. TheCD piece is the jump return
andDE is the smooth part of the return to the equilibrium
The corresponding action potential is shown in Fig. 3~b!. It
has a rather ‘‘rectangular’’ shape which was the reason Z
man called it the heart model.

Zeeman’s nerve model is a system with asymptotic str
ture (2,1):

ȧ522~a1x!,

ḃ52~a11!,

e ẋ52~x31ax1b!, ~13!

wherea andb are the slow variables andx is the fast vari-
able. The slow manifold is defined by the equation

f ~x,a,b!5x31ax1b50, ~14!

and the fast foliation is a two-parametric family of linesa
5const,b5const. Thebistability is observed for thosea and
b for which Eq.~14! has three real solutions forx; the set of
sucha andb is defined by condition 27b224a3.0. On the
contrary, if 27b224a3,0, then Eq.~14! has one simple rea
solution for x, and we call this themonostabilityregion on

FIG. 3. ~a! Phase portrait of Zeeman’s heart model Eq.~12!, e
51023. The double arrows represent the flow on the fast foliat
and the single arrows represent the flow on the slow manifold
this case, the slow manifold is the lineb52x31x. The dotted line
represents the trajectory with the initial point (b,x)5(0.2,0.1).~b!
‘‘Action potential’’ corresponding to the trajectory of panel~a! with
the initial point (b,x)5(0.2,0.1). Here the ‘‘voltage’’ is2x.
2-5
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FIG. 4. ~Color online! Phase portrait of Zeeman’s ‘‘nerve’’ model Eq.~13!, e51023. The semitransparent surface is the slow manifo
x31ax1b50. The thick solid line is the fold line Eq.~17!, the thin lines are its projections to the coordinate planes, the filled circles
the cusp point (0,0,0) and its projections. A selected trajectory,@initial conditions (a,b,x)5(20.8,0.25,20.1)] and its projections are show
by dash-dotted lines.~a! The slow manifold, trajectory and the fold curve, with their projections.~b! The trajectory and the fold curve with
their projections, but without the slow manifold.~c! Action potential~‘‘voltage’’ 2x vs time!, corresponding to the trajectory of~a! and~b!.
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the (a,b) plane. The boundary between these regions in
(a,b) plane is the semicubic parabola

27b224a350, ~15!

which corresponds to one triple root@at point (a,b)
5(0,0)] or one double and one simple roots~all other
points! in Eq. ~14!.

Curve Eq.~15! is the projection onto the (a,b) plane of
the fold curve, defined as the set of points where the slo
manifold is tangent to the fast foliation, (0,0,1)•“ f (a,b,x)
5] f /]x50. So the fold curves satisfy these two equatio

f ~a,b,x!50: x31ax1b50,

] f

]x
~a,b,x!50: 3x21a50,

and can be parametrized byx,

a523x2, ~16!

b52x3. ~17!

This is a smooth curve in the (a,b,x) space. Its projection to
(a,b) plane is also a smooth curve except where it is tang
to the direction of the projection, i.e., to the fast foliatio
Such tangency is characterized by the third condition

]2f

]x2
~a,b,x!50: 6x50.

Thus, the only point where this tangency happens in
model is the point (0,0,0) where Eq.~14! has a triple zero in
x. This is thecusp~or pleating, by the terminology of Ref.
@13#! point of the slow manifold.

The fold curve separates the stable~attracting! and un-
stable~repelling! regions of the slow manifold. Unlike the
heart model, where the fold points have cut the slow ma
fold into three pieces, two stable and one unstable, here
fold curve only makes two pieces, one stable and one
01190
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stable. The unstable piece is projected onto the bistab
region of the (a,b) plane, and corresponds to the middle ro
x of the corresponding functionsf (a,b,x). The stable piece
includes the monostability region together with the upp
and lower branches of the manifold over the bistability
gion.

The resting statein this model is (a,b,x)5(21,0,1) and
it belongs to the upper~‘‘recovery’’ ! branch of the stable par
of the manifold over the stability region. Thus we have t
excitable behavior: perturbations displacing the system fr
the resting state beyond the threshold, represented by
unstable branch of the slow manifold, fall down to the low
stable~‘‘excitation’’ ! branch of the slow manifold, and retur
to the resting state from there. Unlike the heart model, n
there are various opportunities. A trajectory can reach
fold line and make a jump return to the upper branch of
slow manifold moving towards the resting state, or it c
reach that state moving entirely within the slow manifo
circumventing the cusp point, as now the upper and low
branches are connected to each other via the monostabl
gion.

It is not possible to determine analytically, which of th
two possibilities is realized for a given trajectory. Thephase
portrait, showing the slow manifold, the fold line, and
selected trajectory computed numerically, and a correspo
ing action potential are displayed in Fig. 4. This selec
trajectory shows a marginal case: its return path goes v
near to the cusp point. The corresponding action potentia
this nerve model demonstrates a jump onset of excitat
but a moderately smooth return to equilibrium. This loo
similar to the HH action potential, which was the reas
Zeeman called this a nerve model. Note, however, tha
small change in the initial conditions of the trajectory c
result in a jump return, if the trajectory fails to go around t
cusp.

V. PARAMETRIC EMBEDDING

We are going to apply the asymptotic procedure descri
above to the Hodgkin-Huxley and Noble~1962! systems of
2-6
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COMPARISON OF ASYMPTOTICS OF HEART AND . . . PHYSICAL REVIEW E68, 011902 ~2003!
equations defined by Eq.~1! and Table I. The immediate
problem is that these systems do not depend on any pa
eters, but only contain constants, which have been meas
experimentally and have certain values, even if not alw
known with a good precision.

Thus, to apply the singular perturbation technique,
need to introduce the small parameters artificially. This is
course a standard practice in principle, often successf
used on intuitive basis. However, since this procedure is
key step in this study, we are going to formalize it, to avo
any ambiguity.

Definition 1.We will call a system

ẋ5F~x;e!, xPRd,

depending on parametere, a one-parametric embeddingof a
system

ẋ5 f ~x!, xPRd,

if f (x)[F(x,1) for all xPRd. Similarly, we define an
n-parametric embedding, with right-hand sides in the form
F(x,e1 , . . . ,en) and F(x,1, . . . ,1)[ f (x). If an
n-parametric embedding has a form of a Tikhonov’s fa
slow system with asymptotic structure (k1 , . . . ,kn), we call
it a (Tikhonov)(k1 , . . . ,kn)-asymptotic embedding.

The typical use of this procedure has the form of a
placement of a small constant with a small parameter.
system contains a dimensionless constanta which is ‘‘much
smaller than 1,’’ then replacement ofa with ea constitutes a
one-parametric embedding; and then the limite→0 can be
considered. In practice, constanta would more often be re-
placed with parametere, but in the context ofe→0 anda
5const this, of course, does not make any difference fr
ea.

There are infinitely many ways a given system can
parametrically embedded. In terms of asymptotics, which
the embeddings is ‘‘better’’ depends on the qualitative f
tures of the original systems that need to be represente
classes of solutions that need to be approximated. If a
merical simulation of the interesting properties can be d
easily, then the practical recipe we use in this paper is to l
at the solutions of the embedding at different, progressiv
decreasing values of the artificial small parametere, and see
when the features of interest will start to converge. If t
convergent behavior is satisfactorily similar to the origin
system withe51, the embedding is adequate for these f
tures.

VI. ANALYSIS OF THE RELATIVE SPEED
OF THE VARIABLES

To obtain the asymptotic embeddings of the two syste
we need to decide which variables shall be called slow
which shall be called fast. It is reasonable to decide t
based on the characteristic times of those variables. The t
gating variables have in their equations functionsth,m,n
which have just that meaning. The equation forE does not
have a function calledtE , so we define the instant chara
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teristic time of a variablej as the inverse of the correspon
ing diagonal element of the Jacobian of the right-hand sid

t j~E,h,m,n!5U ]

] j S d j

dt D U
21

.

Obviously, for j 5h,m,n this gives the same functionst j as
defined in Eq.~1!, but also can be used forj 5E. After that
we decide that the variables with smallert will be called
fast, and the variables with largert will be called slow.

Theset ’s are not constants, though, but functions, a
these functions depend on different arguments, so they
not be compared directly. To make them comparable,
consider typical solutions at selected initial conditions. T
givesE, n, h, andm as functions oft, which, in turn, defines
all the characteristic time scales of the variables, thet ’s, as
functions of t, via t j (t)5t j„E(t),h(t),m(t),n(t)…, where j
5E, h, n, or m.

Figure 5~a! demonstrates that during the action potent
in the HH model, variablesE and m are always faster than
variablesh and n, and that, compared to each other,m is
slower thanE in the beginning of the action potential, bu
faster thanE in the most part of the action potential. So w
consider HH as a~2,2! system, withh andn as slow variables
andE andm as fast variables.

Figure 5~b! shows that during the pacemaker potentials
the N62 model,m is always the fastest, thatE and h inter-
change at around the overshot spikes, and that all thre
these are always faster thann. So we consider N62 as
~1,2,1! system, wheren is the slow variable,E andh are fast
variables andm is the superfast variable.

VII. A „2,2…-ASYMPTOTIC EMBEDDING
OF THE HODGKIN-HUXLEY SYSTEM

The above analysis suggests that the adequate asymp
embedding of this system is (2,2), with slow variabl
(h,n) and fast variables (E,m).

FIG. 5. ~a,b! Graphs oftE(t) ~dotted lines!, tm(t) ~solid lines!,
tn(t) ~dashed lines!, andth(t) ~dash-dotted lines!, corresponding to
the solutionsE(t) shown on~c,d! for ~a,c! the HH and~b,d! N62
systems.
2-7
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R. SUCKLEY AND V. N. BIKTASHEV PHYSICAL REVIEW E68, 011902 ~2003!
Thus, we consider the following one-parametric emb
ding of Eq.~1!:

dn

dt
5@ n̄~E!2n#/tn~E!,

dh

dt
5@ h̄~E!2h#/th~E!,

e
dE

dt
5CM

21f E~E,h,m,n!,

e
dm

dt
5@m̄~E!2m#/tm~E!, ~18!

with one artificial small parametere. This embedding takes
into account the real relationship between the character
time scales of dynamic variables during typical action pot
tial solution. This system is singularly perturbed with resp
to e.

The corresponding system in the fast timeT5t/e is

dn

dT
5e@ n̄~E!2n#/tn~E!,

dh

dT
5e@ h̄~E!2h#/th~E!,

dE

dT
5CM

21f E~E,h,m,n!,

dm

dT
5@m̄~E!2m#/tm~E!, ~19!

which is regularly perturbed with respect toe.
First we consider the limite→10 numerically. The effect

of this limit onto the shape of the action potential is shown
Fig. 6. We can see that the excitability of the model is p
served, and we observe the jump upstroke to the exc
state, which becomes infinitely fast for infinitely smalle.
However, the asymptotic embedding abolishes the smo
return to rest, as in the system with smalle, the return to rest
includes a fast piece. This suggests that if this smooth re

FIG. 6. The asymptotic embedding of the Hodgkin-Huxley s
tem. ~a! The action potentials in Eq.~18! with the initial condition
(E,m,h,n)5(15,0.0530,0.5961,0.3177), original system withe
51 ~solid line!, and withe51023 ~dashed line!. ~b! Same, in the
fast time Eq.~19!.
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is essential, then the Tikhonov asymptotic embedding, c
trary to Zeeman’s expectation, is not sufficient, and o
should consider some more adequate appearance of the
parameter~s! in the system. Note that this conclusion com
from the numeric experiment with the embedding, prior
and thus independent of, any analytic work.

The slow manifold corresponding to embedding Eq.~18!
is a two-dimensional manifold in the four-dimensional pha
spaceR45$(n,h,E,m)%. It is defined by equating the right
hand sides of theṁ and Ė equations to zero,

f E~E,h,m,n!50,

m̄~E!2m50.

This cannot be resolved explicitly with respect to the fa
variables (E,m), but can be resolved with respect to (m,h),
giving

m5m̄~E!,

h5hSM~n,E!52
ḡK~EK2E!n41ḡl~El2E!

ḡNa~ENa2E!m̄3~E!
. ~20!

This explicit representation of the slow manifold is conv
nient for visualization, and can be used to describe explic
the slow motion in terms of (n,E) as coordinates on the slow
manifold.

The fast foliation is a two-parameter set of planesh
5const andn5const inR45$(n,h,E,m)%. The flow within
each of these planes is described by the system of two e
tions, which in the fast timeT5t/e state

dE

dT
5CM

21f E~E,h,m,n!,

dm

dT
5~m̄2m!/tm . ~21!

Some typical phase portraits of this system at selec
values of parametersn andh are shown on Fig. 7. As antici
pated from the formal speed analysis, which of the two va
ables is faster depends on their values, and the trajectorie
the (m,E) phase plane can be almost vertical or almost ho
zontal in different parts of it. The system can have from o
to three equilibria. The most typical picture observed dur
the selected action potential solution is the type shown
Fig. 7~b!, with two stable equilibria and one unstable equ
librium. The trajectory starting from point labeledA repre-
sents the behavior similar to the onset of the action poten
as shown in Figs. 2~a!, 5~c!, and 6, when the voltage expe
riences a period of stagnation or even a slight tempor
decrease, before them gates open up and allow the fast u
stroke of the voltage.

The stable equilibria of all leaves constitute the attract
regions of the slow manifold. Let us describe the bounda
of these regions. We consider Eqs.~21! with n and h as
constant parameters. The Jacobian of the right-hand side
Eq. ~21! at an equilibrium is

-

2-8
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FIG. 7. Phase portraits of the fast subsystem equation~21! at selected values of parametersh andn: ~a! (n,h)5(0.61,0.01),~b! (n,h)

5(0.37,0.02),~c! (n,h)5(0.14,0.05). Solid lines: the vertical null-clinesṁ}m̄(E)2m50. Dashed lines: the horizontal null-clinesĖ
} f (E,h,m,n)50. Filled circles: stable equilibria, asterisk: a saddle point. Dotted lines: selected trajectories.
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JEm5
]~Ė,ṁ!

]~E,m!
5F CM

21] f E /]E CM
21] f E /]m

@tmm̄82~m̄2m!tm8 #tm
22 2tm

21 G .

However, since at an equilibriumm5m̄(E), this reduces to

JEm5FCM
21] f E /]E CM

21] f E /]m

m̄8tm
21 2tm

21 G .

An equilibrium is stable in linear approximation if and on
if Tr( JEm),0 and det(JEm).0. We have

Tr~JEm!5CM
21 ] f E

]E
2tm

21

52CM
21~ ḡKn41ḡNam

3h1ḡl !2tm
21,0, ~22!

for all physiologically sensible values of the variables, so
first stability condition is always satisfied. Further,

det~JEm!52CM
21tm

21S ] f E

]E
1

] f E

]m

dm̄

dE
D , ~23!

and the zeros of this function determine the boundary of
attractive regions on the slow manifold. In terms of the str
ture of the phase portraits of the fast subsystems Eq.~21!,
condition det(JEm)50 can be viewed as (“Ė•“ṁ)50, i.e.,
tangency of the two null-clines at a double equilibrium.
terms of the geometry of the slow manifold, this conditi
means tangency of the fast flow to the slow manifold, i
defines the fold curves. In more detail, the fold curve sa
fies the following three equations,

Ė50: f E~E,h,m,n!50,

ṁ50: m̄2m50,

det~JEm!50: F~E,m![
] f E

]E
1

] f E

]m

dm̄

dE
50. ~24!
01190
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An explicit equation of the fold curve can be given if w
chooseE as a parameter. Then, resolving Eq.~23! with re-
spect toh, m, andn, we get

h5
ḡl

ḡNa

p~E!

q2~E!2m~E!
,

m5m̄~E!,

n5S 2
ḡl

ḡK

q1~E!2m~E!

q2~E!2m~E!D 1/4

, ~25!

where

m~E!5m̄3~E!/@m̄3~E!#8,

p~E!5~El2Ek!~ENa2EK!21/@m̄3~E!#8,

q1~E!5~ENa2E!~E2El !~ENa2El !
21,

q2~E!5~ENa2E!~E2EK!~ENa2EK!21. ~26!

As n must be real, Eq.~25! only makes sense whenN(E)
[2@q1(E)2m(E)#/@q2(E)2m(E)#>0. The graph of
functions m(E) and q1,2(E) for the standard values of th
parameters is shown in Fig. 8~a!. There are two disjoint in-
tervals,

EP~29.37 . . .,14.66 . . . !ø~41.25 . . . ,45.68 . . . !,

in which q1(E),m(E),q2(E) and thusN(E).0. Thus,
the fold curve consists of two disjoint branches.

The cusp point is defined by condition that system E
~21! has a triple equilibrium, or, equivalently, that the nu
clines of that system have second-order tangency, or, equ
lently, that the fold curve~24! is tangent to the fast leaves
i.e., planesn5const, h5const. This leads to the following
condition, additional to the three equations Eq.~24!:

]F

]E
1

]F

]m

dm̄

dE
50. ~27!
2-9



on

cu

th

t
e

a-
n

er
c-
in
c
he
he

ur
th
n

on

at

o
by
n

r-
oi

for
of
e-

om
h
l
e

m

ith
ld
ut
nt,
we

HH
the

62

ing

h

of
nd

of
of
is

In

R. SUCKLEY AND V. N. BIKTASHEV PHYSICAL REVIEW E68, 011902 ~2003!
Using the definition ofF(E), we find from here that theE
coordinate of the cusp points, if any, is given by the inflexi
points of the graph of the functionM (E)5(E
2ENa)m̄

3(E). For the standard parameter values, there
only one such point,E* '31.92. The value ofN(E) at this
point is negative,N(E* )'20.021. Therefore, the slow
manifold at the standard parameter values does not have
points.

We now demonstrate that a variation of parameters in
HH system is possible that givesN(E* ).0, so the slow
manifold has a real cusp point. From Eq.~25! we can see tha
the sign ofN(E* ) depends on the relative location of th
zeros of the functionsq1,2(E)2m(E) to E* . Note that the
function m(E) is determined by the properties of the activ
tion gates of the Na channel, and variations of those are
physiologically feasible. On the contrary, the paramet
ENa, EK , andEl are determined by the ratios of the intra
ellular and extracellular concentrations of the correspond
ions, which can be changed during the experiments, and
vary physiologically depending on the ionic balance of t
organism. From Fig. 8~b! one can see that the closest to t
E* root of q1,2(E)5m(E) is the left root ofq1(E), obvi-
ously strongly correlated with the root ofq1(E)50, i.e.,E
5El . Incidentally, as we noted above,El is the least reliable
parameter of the model, as its value has not been meas
but chosen using indirect considerations. We have found
by changingEl from its standard value of 10.613, we ca
shift the left zero ofq1(E)2m(E) throughE* 531.92. No-
tably, this parameter variation does not involve functi
M (E) whose inflexion point isE* , so the value ofE* re-
mains unchanged. Figure 8~b! shows what happens toq1 ,
q2, andm for El525. We haveN(E).0 at the cusp point
E* 531.92. As a result, atEl525 and all other parameters
standard values, we haveN(E* )'0.0012.0, and there is a
cusp point, (h,n,E,m)'(0.0013,0.1860,31.92,0.6711).

Note that the conditionN(E* ).0 is equivalent to the
condition of having the single interval withN(E).0, i.e.,
the slow manifold has a real cusp point if and only if the tw
fold lines join into a single fold line. This can be seen
considering the marginal case when the graphs of the fu
tions q1(E) andm(E) have a point of tangency; straightfo
ward calculations show that this always happens at the p
of the zero of the second derivative ofM (E), i.e., atE .

FIG. 8. Functionsq1(E) ~dots!, q2(E) ~dash dots!, and m(E)
~solid! defined by Eq.~26! for ~a! El510.613 and~b! El525. The
fold line of the slow manifold corresponds to the values ofE where
m(E) is betweenq1(E) andq2(E). Vertical dashed line isE5E*
'31.92, corresponding to the cusp point.
*
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The phase portraits resulting from the above analysis
both values ofEl are shown in Fig. 9. As the phase space
the system is four dimensional, we depict only thre
dimensional projections of the portraits. We use Eq.~20! to
draw the slow manifolds, and Eq.~25! to draw the fold
curves. Figure 9 also shows typical trajectories that go fr
a starting point~A! along the fast foliation until they reac
the slow manifold (B), then along the slow manifold, unti
the fold curve (C), where we have a jump return down th
fast foliation to the lower part of the slow manifold (D).
Then the trajectories eventually move to the equilibriu
point (E).

In the system with the modified value ofEl , there exists,
theoretically, an alternative for the trajectories. Namely, w
a different flow on the slow manifold, the trajectories cou
have returned to the equilibrium without a jump return, b
only going along the slow manifold, around the cusp poi
as they did in Zeeman’s nerve model. However, as far as
could see, this possibility has not been realized in the
model at any reasonable variations of parameters, and
action trajectories always have a jump return.

VIII. A „1,2,1…-ASYMPTOTIC EMBEDDING
OF THE NOBLE „1962… SYSTEM

Our formal analysis of the relative speeds in the N
model has shown thatm is the fastest variable,E andh are of
intermediate speeds comparable to each other, andn is the
slowest variable. This understanding leads to the follow
(1,2,1)-asymptotic embedding:

dn

dt
5@ n̄~E!2n#/tn~E!,

e1

dE

dt
5CM

21f E~E,h,m,n!,

e1

dh

dt
5@ h̄~E!2h#/th~E!,

e1e2

dm

dt
5@m̄~E!2m#/tm~E!. ~28!

First, we consider the limite2→0. The corresponding slow
manifold is defined by equating the right-hand side of theṁ
equation to zero, which givesm as a single-valued smoot
function of E,

m5m̄~E!.

This makesm a uniquely and everywhere defined function
the slower variables, i.e., the slow manifold is uniquely a
reversibly projected onto the (n,h,E) space. This slow mani-
fold is always attractive. This allows adiabatic elimination
variablem from the system. Figure. 10 illustrates results
direct numerical simulations, illustrating the accuracy of th
procedure. We see that the replacement ofm with m̄(E) has
virtually no effect on the shape of the action potential.
2-10
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FIG. 9. ~Color online! ~a,d! The three-dimensional projections of the phase portraits of the Hodgkin-Huxley system and~b,e! its
(2,2)-asymptotic embedding ate51023, together with~c,f! corresponding action potentials, for~a,c! El510.613 and~d,e! El525. The
semitransparent surface is the slow manifold Eq.~20!. On ~a,b,d,e!, the thick solid lines are the fold curves and the thin solid lines are t
projections on the coordinate planesh5const,n5const, andE5const. The trajectories and their projections are shown by dotted lines.
initial point of the trajectories is (E,h,m,n)5(15,0.5961,0.0530,0.3177). The filled circle on~d,e! represents the cusp point (E,h,m,n)
5(31.92,0.0013,0.6711,0.1860). LabelsA2E mark the feature points of the solution on the coordinate planesh5const andn5const on
~a,b,d,e! and are also marked on the graphs on~c,f!.
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other words, numerical experiment shows that variablem can
be adiabatically eliminated from the system with good qu
titative accuracy.

After this elimination, we have a (1,2) Tikhonov system

FIG. 10. The first asymptotic embedding in the Noble-1962 s
tem Eq.~28! at e151 ande2→0, leading to adiabatic elimination
of the gatem. ~a! The pacemaker potentials in the original syste
e251 ~solid line!, and in the reduced system,e250 ~dotted line!,
for initial point (n,E,h,m)5(0.3276,270.6426,0.6025,0.0786)

~b! The behavior ofm(t) ~dashed line! and m̄„E(t)… ~dotted line!
during one pacemaker potential@E(t)30.01 shown by solid line for

comparison#. The two curvesm(t) and m̄„E(t)… are indistinguish-
able at this resolution.
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dn

dt
5@ n̄~E!2n#/tn~E!,

e1

dh

dt
5@ h̄~E!2h#/th~E!,

e1

dE

dt
5CM

21 f̄ E~E,h,n!, ~29!

where

f̄ E~E,h,n!5 f E„E,h,m̄~E!,n….

This ‘‘reduced’’ system has two fast variablesh andE and
only one slow variablen. Therefore, the slow manifold is on
dimensional, and the fast foliation is two dimensional. Th
Zeeman’s conjecture on the cusp singularity in the sl
manifold is not applicable here even in theory, and we
bound to have a jump return.

This is confirmed by direct numerical simulations illu
trated in Fig. 11~a!. The pacemaker potentials in the syste
with small e150 are somewhat shorter, mainly at the e
pense of the slow returns fore151 becoming jump returns
for e1→0, and also by further quickening of the fast onse

-

,
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Correspondingly, the period of oscillations is shorter. A
other observation can be made on the regular limit@Fig.
11~b!#, i.e., the behavior of the system in the fast time: t
overshot of the voltage at the onset of the pacemaker po
tial is due to the interaction of the two fast variablesE andh,
as it is preserved when the slow motion ofn is frozen.

The one-dimensional slow manifold of Eq.~29! is defined
by equations

h2h̄~E!50,

f̄ E~E,h,n!50.

This system of equations cannot be explicitly resolved w
respect to (E,h), but is easily resolved with respect to (h,n),
giving parametrization of the manifold byE,

h5h̄~E!,

n5nSM~E!

5@$~m̄3h̄ḡNa1ḡNa1
!~ENa2E!1ḡK1

~E!~EK2E!

1ḡl~El2E!%/$ḡK~E2EK!%#1/4.

The fast foliation consists of planesn5const, with coor-
dinates (h,E). The dynamics on the fast leaves in terms
the fast timeT is described by the system

dE

dT
5CM

21 f̄ E~E,h,n!,

dh

dT
5@ h̄~E!2h#/th~E!, ~30!

wheren is a constant parameter defining the leaf.
The stability of an equilibrium in the fast subsystem

determined by the Jacobian of the right-hand side of
~30!,

FIG. 11. The second asymptotic embedding in the Noble-1
system Eq.~29! at e1→0. ~a! Singular limit. Solid line: solution of
the original system (e151), dotted line, close to the reduced sy
tem (e151023), for initial point (n,E,h)5(0.3276,
270.6426,0.6025).~b! The corresponding regular limit. Same in
tial conditions as in~a!, in the fast timeT15t/e1.
01190
-

n-

h

f

.

JEh5
]~Ė,ḣ!

]~E,h!
5F CM

21] f̄ E /]E CM
21] f̄ E /]h

@thh̄82~ h̄2h!th8#th
22 2th

21 G
5FCM

21] f̄ E /]E CM
21] f̄ E /]h

th
21h̄8 2th

21 G ~31!

becauseh5h̄(E) at an equilibrium. The stability in linea
approximation requires Tr(JEh),0 and det(JEh).0. We
have

Tr~JEh!5CM
21 ] f̄ E

]E
2th

215CM
21S ] f E

]E
1

] f E

]m

dm̄

dE
D 2th

21 .

Unlike Eq. ~22!, we are not guaranteed that this function
negative in the physiological region, sinc
(] f E /]m) (dm̄/dE).0. The graph of Tr(JEh)(E) in the
physiological range ofE is shown in Fig. 12. It shows tha
stability condition Tr(JEh)(E),0 is violated in a rangeE
P@ETr

1 ,ETr
2 #, whereETr

1 '268.25,ETr
2 '257.01.

Further,

det~JEh!52CM
21th

21S ] f̄ E

]E
1

] f̄ E

]h

dh̄

dE
D . ~32!

As can be seen from Fig. 12, condition det(JEh),0 is
satisfied in intervalsEP(2`,Edet

1 )ø(Edet
2 ,Edet

3 )ø(Edet
4 ,

1`), whereEdet
1 5277.37, Edet

2 5255.54, Edet
3 5247.24,

Edet
4 5220.27.
Thus, we see that the interval of instability due to t

positive trace, (ETr
1 ,ETr

2 ), lies wholly inside the interval
(Edet

1 ,Edet
2 ) where the equilibria are unstable due to negat

determinant. Therefore, the stability of the equilibria of t
fast subsystem, hence attractive and repelling pieces of
slow manifold, can be determined based on the sign of
determinant only, at least for the standard values of the
rameters. And this criterion produces three disjoint attract
pieces of the slow manifold.

Incidentally, the sign of det(JEh), and thus the stability of
different parts of the slow manifold, can be deduced from
slope of its (n,E) projection. Indeed, this projection is de
fined byn5nSM(E), where

2

FIG. 12. Graphs of 103detJ(E) ~solid line, ms22) and Tr(J)
3(E) ~dashed lines, ms21), whereJ5JEh is defined by Eq.~31!.
2-12
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FIG. 13. Phase portraits of the fast leaves at the specified values ofn. Dashed lines, theĖ50 isoclines; solid lines,ḣ50 isoclines; dots,
selected trajectories; filled points, stable equilibria; asterisks, saddle points.
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f̄ E„E,h̄~E!,nSM~E!…50.

We differentiatef̄ (E), and thus find the slope of the slo
manifold projection as

dnSM

dE
52S ] f̄ E~n!

]n
D 21S ] f̄ E

]E
1

] f̄ E

]h

dh̄

dE
D .

Comparing this with Eq.~32! and noticing that

] f̄ E~n!

]n
54ḡKn3~EK2E!,

we see that det(JEh) has the opposite sign todnSM /dE as
long as E.EK , i.e., during any physiologically sensibl
action-pacemaker potential.

Thus, the stable points of the slow manifold are tho
where the slope of the projection of the slow manifold to t
(E,n) plane, see Figs. 14~a,b!, is negative.

Figure 13 shows the different types of phase portraits
the fast subsystem, taken at selected values ofn. These por-
traits illustrate the null-clines, equilibria, and selected traj
tories. In Fig. 14, one can see also the projection of the s
manifold and the selected trajectory to the (n,E) plane, for
the original system,e151 @panel ~a!# and for the reduced
systeme1→10, represented bye151023 @panel~b!#.
01190
e

f

-
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The selected trajectory, representing the pacemaker po
tial, has slow motion pieces along the upper (CD) and lower
(EA) branches of the slow manifold. Between these sl
motions, there are fast transitions from the lower branch
the upper branch (ABC), which is the jump onset with an
overshot of the pacemaker potential, and from the up
branch to the lower branch (DE), which is the jump return.
These fast transitions occur near the fold points on the s
manifold. The labelsA–E correspond to the feature points o
the pacemaker potentials shown in Fig. 2. This fast-slow
havior is exaggerated on panel~b! where the fast pieces o
trajectory are visually vertical.

The pacemaker potential trajectory does not ever co
close to the intermediate stable branch of the slow manifo
As can be seen from Fig. 13~c!, the angle between the null
clines at the middle stable equilibria of the fast subsystem
very small and the stability of these equilibria must be ve
weak. Indeed, the numerical experiment shows that ate1

51, there are no trajectories that would stay along
middle branch of the slow manifold for any considerab
time.

Note that there is no stable equilibrium in the model at
standard parameter values, and so the selected trajectory
resents auto-oscillations. With this fact in mind, the over
behavior is comparable to that of Zeeman’s heart model in
appropriate parameter region that gives limit cycle behav
The only essential difference in the morphology of the pa
ld.
ig. 13
FIG. 14. ~a! The projection of the phase portrait of the N62 system onto the (n,E) plane. Solid and dashed lines: the slow manifo
Dotted line: a selected ‘‘pacemaker potential’’ trajectory. Vertical dot-dashed lines: positions of the selected fast leaves shown in F~b!
Same as~a!, with the trajectory of the embedded system ate151023. ~c! The pacemaker potentials of the original~solid line! and embedded
~dotted line! systems. LettersA, B, C, D, E mark feature points of the pacemaker potential trajectory.
2-13
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maker potential is the nonmonotonic onset, represented
the ABC piece of the trajectory, including the overshot. Th
nonmonotonicity is a consequence of the behavior of tra
tories in the corresponding two-dimensional fast subsyst
as illustrated by the portrait on the fast leafn50.3, Fig.
13~a!. This is essentially different from what is possible
one-dimensional fast subsystems, where the transition is
ways monotonic.

IX. DISCUSSION

We have analyzed the asymptotic behavior of two cla
cal models of biological excitable systems, the Hodgk
Huxley ~HH! model of a nerve axon and Noble-1962~N62!
model of a heart muscle fibre. Although the latter was onl
modification of the former, we have found that the
asymptotic properties differ substantially. The least surp
ing difference is the longer duration of the pacemaker pot
tials in the N62 model than the action potentials in the H
model, as it is a direct consequence of the speed of the s
potassium current decreased by the two orders of magni
in N62 compared to HH. However, the differences do n
stop there.

First of all, the asymptotic structure of the two models
different: whereas the HH model is a (2,2) model, i.e., h
two slow and two fast variables, the N62 model is a (1,2
model, i.e., has 1 slow, 2 fast, and 1 superfast variable.
virtue of the simple structure of the superfast system, wh
always has a unique and stable equilibrium, the N62 mod
readily reduced to a (1,2) system, with one slow variable
two fast variables. After that, the HH and N62 models hav
common feature, which makes them different from the t
Zeeman’s models: two fast variables in both HH and redu
N62, as opposed to one fast variable in both Zeeman’s h
and nerve models. This feature appears to be not just a t
nical difference, but brings about new phenomena that
not possible in systems with one fast variable. In the H
model, the feature we found is less prominent: it is a sli
delay of the fast onset of the action potential, even with
slight decrease in the beginning. In the N62 model, this
much more prominent: it is the overshot in the beginning
a pacemaker potential. This last feature is quite typical
many cardiac excitability models and of real cardiac ce
behavior; thus, we believe that the mechanism of the o
shot in the N62 model may be prototypical for more detai
and up-to-date models. An important lesson here is tha
any asymptotic embeddings in such models are to retain
property, theymusthave at least a two-dimensional fast f
liation.

Another characteristic feature of the solution is the ‘‘r
turn,’’ i.e., the repolarization to the resting potential in t
excitable HH system and to the lower phase of oscillation
the oscillatory N62 model. The two Zeeman’s models dif
in that the nerve model, at appropriate initial conditions, h
a smooth return, while the heart model always has a ju
return. In our analysis, both the HH nerve and N62 he
models have proved to demonstrate jump returns. Howe
the reasons for that are different in the two models. In
N62 model, there is only one slow variable, thus the sl
01190
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manifold is only one dimensional, and therefore, in acc
dance with Zeeman’s reasoning, the slow return is imp
sible. Indeed, the action and resting branches of the s
manifold have been found to be separated in the phase sp
In contrast, the HH model has two slow variables, and
two-dimensional slow manifold. Therefore, there exists
theoretical possibility of this manifold to have a cusp cat
trophe in its mapping to the space of slow variables, an
possibility for trajectories to return from the upper to th
lower branch of the slow manifold by going along that ma
fold around the cusp point. Indeed, we have found that,
though such a catastrophe is not observed in the model a
standard values of the parameters, it may appear at appr
ate, physiologically feasible variations of the paramete
However, the existence of this catastrophe does not autom
cally imply that trajectories will necessary go around t
cusp point, and as the numerical calculations show, in
they do not, at least at the parameter values studied.

Notice that the very fact of the jump return does not d
pend on details of the analytic work, but is a direct result
the chosen parametric embedding, i.e., the way the artifi
small parameter is introduced in the model to ma
asymptotic analysis possible. Indeed, this property can
established by direct numerical calculations of trajectories
systems with progressively decreasing values of the artifi
parameter. This is a convenient way to establish propertie
an asymptotic embedding,prior to the asymptotic analysis o
that embedding.

Applied to the character of the return in the HH and N
models, the present results are less than entirely agre
with intuitive impressions that one might have observing
solutions of the original models. Indeed, the action poten
in the HH model definitely looks more triangular than rec
angular, which was the original impulse for Zeeman’s co
jecture on the role of the cusp catastrophe. And yet,
property is not conserved in the asymptotic embedding. T
pacemaker potentials in the N62 model are less triangu
and the question of whether the return to the lower poten
should be considered fast or slow may be a subjective ma
It is, however, certain that the slope of the return is mu
smaller than the slope of the onset. In the asymptotic emb
ding considered, more specifically, in the limite1→10, this
difference is not reflected at all, and both slopes beco
vertical.

Thus, we conclude that if the slow character of the retu
is of importance, then the asymptotic embedding we u
here should be considered unsatisfactory. At this point,
should recall that there are infinitely many asymptotic e
beddings, i.e., infinitely many ways artificial small param
eter~s! can be introduced to a given system of equations. T
asymptotic embeddings we used here were both of
Tikhonov fast-slow-type, where small parameters appea
factors at some of the time derivatives, or as factors at so
of the right-hand sides, depending on the choice of the t
scale. The number of ways such embeddings can be don
a system of only a few equations is limited, and consider
the formal speed analysis that we performed in Sec. VI, th
are practically no alternatives@19#. This class of perturbed
systems is the best studied, and a huge amount of litera
2-14
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dedicated to singular perturbations and fast-slow system
practically restricted to this class: e.g., it isthe only class
considered in a very comprehensive review@13#. Thus, the
formal analysis of asymptotic properties of realistic excita
systems ought to have started with this embedding. Howe
we now see that analysis restricted to this class may no
sufficient, and other types of embedding should be con
ered. And this may involve interesting mathematical qu
tions, as the mathematical theory of non-Tikhonov fast-sl
systems is very little developed yet.

There are two more points to notice in the analysis of
N62 model, the possibility of fast oscillatory instability an
middle stable branch of the slow manifold. Oscillatory ins
bility is impossible in systems with one fast variable, but
theoretically possible in systems with two fast variables, a
would be characterized by change of sign of the trace of
Jacobian at the equilibrium at a positive determinant of
Jacobian, i.e., a Hopf bifurcation. This possibility is not re
lised in the N62 model, as the change of sign of the tr
happens at negative determinant; however, the fact that
a change happens is suggestive of the fact that this kin
instability may take place in this system at different para
eter values, or in other models of similar nature. This wo
d
,

2

.V.
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correspond to bursts of high frequency oscillations on
wake of the action-pacemaker potential; indeed, such bu
are observed in some models@16#. The middle stable branch
in N62 model was completely unexpected. If it was mo
pronounced, it could correspond, e.g., to other ‘‘minor’’ a
tion potentials with smaller amplitude and much shorter d
ration than the normal potentials. This possibility is not re
ized in the N62 system at normal parameter values, and
could be considered as an artifact of the parametric emb
ding. But again, the fact that such a feature takes place a
formally, suggests that in some similar systems it may app
indeed. We are not aware of any theoretical or reliable
perimental description that could be associated with s
minor potentials; however, there are certain experimen
facts which do not yet have firm theoretical explanatio
and for which such minor potential explanation may lo
plausible@17#.
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